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A Class of Discrete Time Coverage Growth Functions

for Software Reliability Engineering

Joong-Yang Park!) Gyemin Lee? and Jae Heung Park®

Abstract

Coverage-based NHPP SRGMs have been introduced in order to incor-
porate the coverage growth behavior into the NHPP SRGMs. The coverage
growth function representing the coverage growth behavior during testing is
thus an essential factor of the coverage-based NHPP SRGMs. This paper
proposes a class of discrete time coverage growth functions and illustrates
its application to real data sets.

Keywords: Software reliability growth model; non-homogeneous Poisson process; cover-
age growth function.

1. Introduction

Recently software is becoming an integral part of computer systems. Since failures
of a software system can cause severe consequences, reliability of a software system is
a primary concern for both software developers and software users. Testing is a key
activity for detecting and removing faults and improving reliability of a software system.
In theory, it is impossible to detect and remove all the faults in the software system within
a reasonable amount of testing time. Therefore developers usually determine when to
stop testing and release the software based on the estimates of reliability measures. Many
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software reliability growth models (SRGMs) have been proposed and applied in practice
to estimate software reliability measures.

One of the most popular SRGMs is the class of non-homogeneous Poisson process
(NHPP) SRGMs. NHPP SRGMs postulate that the number of faults detected up to
t testing time follows a Poisson distribution with mean value function (MVF) m(t).
An NHPP SRGM is therefore characterized by its MVF. Recently the coverage growth
behavior during the testing has been integrated into the NHPP SRGMs. This approach is
reasonable because the more is covered the software system, the more faults are likely to
be detected. Such NHPP SRGMs are referred to as the coverage-based NHPP SRGMs.
The coverage growth behavior is usually represented by the coverage growth function
(CGF) c(t). MVFs of well-known coverage-based NHPP SRGMs are as follows:
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where a is the initial fault content, a(t) is the fault content function, b is the fault detec-
tion rate, and b(t) is the fault detection rate function. Egs. (1.1)—(1.4) were respectively
proposed by Piwowarski et al. (1993), Gokhale et al. (1996), Pham and Zhang(2003),
and Yamamoto et al. (2004). If we insert different CGFs into one of Eqgs. (1.1)—(1.4),
different MVFs and consequently different NHPP SRGMs will be obtained. Egs. (1.1)-
(1.4) can be thus regarded as frameworks for generating NHPP SRGMs. Other types of
coverage-based NHPP SRGMs can be found in Yamada and Fujiwara(2001), Fujiwara
and Yamada(2002) and Park et al. (2005a, 2005b).

Egs. (1.1)-(1.4) indicate that important software reliability metrics such as the num-
ber of detected faults, the number of remaining faults and the probability that the soft-
ware operates without failing for a specified time interval are directly related to the
coverage. Performance of coverage-based NHPP SRGMs derived from Egs. (1.1)—(1.4)
depends on how closely the corresponding CGF's represent the actual coverage growth
behavior. In order for a coverage-based NHPP SRGM to be widely applicable, its CGF
should be able to represent the coverage growth produced by arbitrary testing profile.
Otherwise, its application will be limited. It is therefore necessary to develop CGFs with
good representational ability.

This paper first reviews the previous studies on the CGF in Section 2. A class of
discrete time CGFs is proposed in Section 3. Section 4 deals with maximum likelihood
estimation of the parameters of the CGFs in the proposed class. A specific CGF should
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be selected from the class for practical application. Section 5 suggests the CGF based
on the beta distribution and examines its usability by applying to the real data sets.
Finally, concluding remarks are presented in Section 6.

2. Review on the CGFs

We begin this section by giving the formal definition of CGF. Let M be the set of
constructs, which are basic building elements of a software system under testing. That
is, M itself is the software system under testing. Testing is performed by executing test
cases randomly selected from the input space according to the specified testing profile.
The set of constructs executed up to t testing time is denoted by M(¢). One plausible
metric for measuring the thoroughness of the testing and/or the progress of the testing
is the coverage defined as C(t) = |M(t)||M|~*, where | - | is the cardinality of a set. The
CGF is defined as the expected value of C(t), i.e., c(t) = E [C(t)].

The currently available CGFs are summarized in Table 2.1. Park et al. (2005a,
2005b) and Park and Fujiwara(2006) empirically compare the CGFs in Table 2.1 and
remark that c3(t) and ¢;o(t) are significantly better than others and compete with each
other. However, these comparative studies ignore the stochastic attributes of C(t). This
is mainly because all the ¢;(t)’s in Table 2.1 except c(t) and c¢;1(t) have been proposed
without studying the underlying stochastic process C(t) or |[M(t)|. Grottke(2002) derived
cs(t) by considering the coverage growth process as a Markov model, whereas Gokhale
and Mullen(2004, 2005) derived c;0(t) under the assumption that the execution rate of a
construct follows a lognormal distribution. Even though c3(t) and ¢19(t) were shown to be
well-performing CGFs, c3(t) lacks the theoretical foundation and c1¢(t) is not supported
by some real data sets. Therefore, it is necessary to further investigate the coverage

Table 2.1: Available CGFs

CGF references

c1(t) =1 —exp(—pt) Gokhale et al.(1996), Piwowarski et al. (1993)
c2(t) = vIn (1 + Bt) Malaiya et al. (2002)

c3(t) =1 — exp (—6t7) Gokhale et al. (1996)

ca(t) =1~ (14 Bt)exp (—Bt) Gokhale et al. (1996)

cs(5) = o0~ Gohale and Trivedi(1999)

ce(t) =1—(1—Byt)Y/” Grottke(2002)

c7(t) = ap — a1 exp (—ft) Sedigh-Ali et al. (2002)

ca(t) = ao — SLIRUY Sedigh-Ali et al. (2002)

colt) = f;—gﬁ’é%g—) Yamamoto et al. (2004)

—(In B—p)2 /202
co(t)=1— [Fe” t%dﬁ Gokhale and Mullen(2004), Gokhale and Mullen(2005)
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growth phenomenon. In this respect, we develop a class of CGFs in the next section.

3. A Class of Coverage Growth Functions

The CGF's listed in Table 2.1 implicitly assumes that the testing time is continuous.
Such CGFs are applicable when the testing time is measured as the execution time or the
testing effort. The remaining of this paper assumes that the testing time is the number
of executed test cases, i.e., the testing time is discrete. Then we will develop a class of
CGF's under the following assumptions:

(i) Constructs in M are executed independently;

(i) Execution probability p of a construct is a random variable with distribution F(p).

Assumption (i) implies that whether a construct is executed does not depend on other
constructs. In general, this does not hold. For example, if some constructs belong to the
same execution path, their executions will not be independent. However, if the system is
fairly large, the constructs unrelated to a certain construct will be much more than the
constructs related to the construct. Then overall dependency among constructs would be
negligible. Assumption (i) can be employed for such circumstances. Assumption (ii) is
concerned with the probability that a construct is executed by a test case. The execution
probability, p, of a construct mainly depends on the testing profile which expresses how
to select test cases from the input space. Once the testing profile is given, the execution
probability of a specific construct is determined. However, the execution probabilities of
the constructs in M are not equal. The distribution F(p) represents the distribution of
p over the constructs in M.

Let 7(t|p) denote the probability that a construct with execution probability p is
executed up to t** test case. Since test cases are randomly selected from the input space,
m(t|p) is computed as

n(tlp) =1— (1 —p). (3.1)

That is, the time to execution of a construct has the geometric distribution with pa-
rameter p. The probability that a construct is executed up to t** test case is therefore
obtained as

ww=4wmmw@. (3.2)

Due to Assumption (i), |[M(t)| follows a binomial distribution with parameters |M| and
m(t). It is worthy of note that m(t) is the mean of (¢ | p) averaged over all the constructs
in M. Thus 7(t) can be interpreted as the proportion of executed constructs in M, i.e.,
¢(t) = m(t) holds. In the remaining of this paper, c(t) and 7(t) will be used interchange-
ably. Eq. (3.2) generates different w(t)’s for different F((p)’s. Thus we suggest the class
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of m(t)’s as a collection of CGFs. Each (t) in the class is identified by the corresponding
F(p).

4. Maximum Likelihood Estimation

Suppose that a coverage growth phenomenon has been observed at t; fori=1,2, ..., n.
Let m;; and ¢4, be the values of |[M(t)| and C(t) measured at ¢;. The observed increments
of |M(t)| and C(t) during (t;_1, t;] are then expressed as z;, = m;,—my,_, and ¢y, —¢;, , =
xy,|M|~1, where m¢, = 0 and to = 0. Since a coverage growth phenomenon is repeatedly
observed at different times, the observed values m;,’s and c;,’s are not independent. That
is, the coverage growth behavior during (¢;_1,¢;] depends on m,, , and the conditional
probability that a construct not executed up to t;_1 is executed up to t;. Since the
conditional probability is computed as

m (tl) - (ti—l)

O (4.1)

the increment of |M(t)| during (¢;—1,¢;] has the binomial distribution with parameters
|M| —my,_, and [7(t;) - = (tic1) ][I =7 (tim1) ] ~!. Therefore, for given my,’s, ¢t,’s and
t;’s, the likelihood function is obtained as

() [ )

i=1
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The above likelihood function indicates that the joint distribution of z;,’s is the multi-
nomial distribution with parameters [M| and = (¢;} — 7 (¢;—1), i = 1,2,...,n. The corre-
sponding log likelihood function is

InL
= K+thi In (7 (t:;) = 7 (tic1) ) + (IM] —me, ) In (1 — 7 (t,) )
=K+ |M||:Z(Cti —ce_)In(m () —w(tiza)) + (1 —c, ) In(1 _ﬂ(tn))],

=K+ |M| L* (4.2)

where K is a constant independent of parameteris to be estimated. Maximum likelihood
estimates can be obtained by maximizing L*.
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5. Numerical Illustration

In this section we illustrate how to use the proposed class of CGFs in practice.
First, we have to select a specific 7(t) from the class. Selection of 7(t) is equivalent to
specification of F(p). We suggest the beta distribution as one of the plausible F(p)’s. If
F(p) is the beta distribution with parameters o and 3, then

_[ T (1=

w0 = [ [1-a-»] g — (5.1)
_,_Blap+t)
=1 B(Oz,,@) , (5.2)

where B(a, f3) is the beta function. The CGFs given by Eq. (5.2) is now applied to three
real data sets reported by Vouk(1992). The three data sets are referred to as DS1, DS2
and DS3, respectively. Vouk(1992) collected the three data sets from a NASA supported
project implementing sensor management in an inertial navigating system. Each data set
consists of values of the number of executed test cases, the number of detected faults and
four coverage metrics. The four coverage metrics are respectively block, branch, c-use
and p-use coverages. The proposed CGF are applied to each coverage metric of each
data set. The CGF given by Eq. (5.2) was fitted to each coverage metric of these data
sets. The maximum likelihood estimates are obtained by maximizing L* and presented
in Tables 5.1-5.3. The observed coverage values ¢;,’s and the fitted CGFs are plotted in
Figures 5.1-5.3. The CGF given by Eq. (5.2) works well for DS1-DS3.

Table 5.1: Maximum likelihood estimates for DS1

coverage

parameter  block branch c-use p-use
a 0.2820 0.2637 0.1347 0.1323
Jé] 0.3506 0.4804 0.1314 0.5206

Table 5.2: Maximum likelihood estimates for DS2

coverage

parameter block branch c-use p-use
a 0.4004 0.4036 0.3911 0.2398
15 0.6060 0.7336 0.4085 0.3929
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Table 5.3: Maximum likelihood estimates for DS3

coverage

parameter block branch c-use p-use
« 0.2915 0.2642 0.1931 0.1952
B 0.2355 0.2731 0.0857 0.3683
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Figure 5.3: Coverage growth functions for DS3

6. Concluding Remarks

A recent trend in developing NHPP SRGMs is to incorporate some additional infor-
mation other than the testing time into the NHPP SRGMs. As the testing progresses,
only the faults located in the covered portion of the software system, not all the faults in
the software system, are exposed to the fault detection activity. Thus the coverage-based
NHPP SRGMs have been developed. Since one of the most important factors of the
coverage-based NHPP SRGMs is the CGF, we modeled the stochastic process underly-
ing the coverage growth phenomenon. The resulting model provides us with a class of
discrete time CGFs. Each CGF of the class is identified with the distribution of execution
probability p. It was also shown that the CGF based on the beta distribution performs
well for some real data sets. However, it is necessary to investigate performance of NHPP



A Class of Discrete Time Coverage Growth Functions 505

SRGMs, which are combinations of the coverage-based NHPP SRGM frameworks given
by Egs. (1.1)-(1.4) and the CGF of Eq. (5.2). Plausible distributions other than the beta
distribution are to be searched. In addition, the continuous time version of the proposed
class is to be developed and compared with the currently available CGF's.
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