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Classification Rule for Optimal Blocking for
Nonregular Factorial Designs*
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Abstract

In a general fractional factorial design, the n-levels of a factor are coded
by the n'" roots of the unity. Pistone and Rogantin (2007) gave a full
generalization to mixed-level designs of the theory of the polynomial indi-
cator function using this device. This article discusses the optimal block-
ing scheme for nonregular designs. According to hierarchical principle, the
minimum aberration (MA) has been used as an important criterion for se-
lecting blocked regular fractional factorial designs. MA criterion is mainly
based on the defining contrast groups, which only exist for regular designs
but not for nonregular designs. Recently, Cheng et al. (2004) adapted the
generalized(G)-MA criterion discussed by Tang and Deng (1999) in studying
2P optimal blocking scheme for nonregular factorial designs. The approach is
based on the method of replacement by assigning 2P blocks the distinct level
combinations in the column with different blocks. However, when blocking
level is not a power of two, we have no clue yet in any sense. As an example,
suppose we experiment during 3 days for 12-run Plackett-Burman design.
How can we arrange the 12-runs into the three blocks? To solve the problem,
we apply G-MA criterion to nonregular mixed-level blocked scheme via the
mixed-level indicator function and give an answer for the question.
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1. Introduction

Factorial experiments are conducted for simultaneously investigating a num-
ber of factors. Most of the background theory of designs is related with regular
factorial designs. For regular designs, any two factorial effects can either be esti-
mated independently of each other or fully aliased. A regular design is uniquely
determined by independent defining words. Designs that do not possess this
property are called nonregular designs, which include many mixed-level orthogo-
nal arrays. For reasons of run size economy or flexibility, nonregular designs may
be used. For nonregular designs, some factorial effects may neither be uncorre-
lated nor fully aliased, that is, they have an absolute correlation strictly between
0 and 1. In these designs, the aliasing of effects may have a complex pattern, and
are therefore referred to as designs with complex aliasing. Because of complex
aliasing, nonregular designs have traditionally been used for screening only main
effects. However, complex aliasing actually may allow some interactions enter-
tained and estimated without making additional runs as shown in Hamada and
Wu (1992).

Blocking is a commonly used technique to control systematic noises in ex-
periments. Such noises might come from day-to-day variation or batch-to-batch
variation. Our primary concern is how to choose a good blocked factorial design.
When we perform only a fraction of the complete factorial experiment, some
factorial or block effects are aliased(or confounded) with some other factorial
effects.

In this paper, we discusses the optimal blocking criteria for nonregular de-
signs. Based on the hierarchical principle, the minimum aberration (MA, for
short) (see, Fries and Hunter, 1980) has been used as an important blocking cri-
terion for regular factorial designs. According to the MA criterion, to choose
optimal blocked factorial designs we just sequentially minimize the wordlength.
This criterion is basically same with sequentially minimizing the numbers of alias
relations between factorial effects for blocked regular two-level factorial designs
(see, Zhang and Park, 2000). MA criterion is mainly based on the defining con-
trast groups, which only exist for regular designs but not for nonregular designs.

Recently, Cheng et al. (2004) adapted the generalized minimum aberration
(G-MA, for short) criterion discussed by Tang and Deng (1999) in studying 2°
optimal blocking scheme for nonregular factorial designs. The approach is based
on the method of replacement by assigning 2P blocks the distinct level combi-
nations in the column with different blocks. However, when blocking level is
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not a power of two, we have no clue yet in any sense. Examples of nonregular
factorial designs include Plackett-Burman (PB) designs, which are constructed
from Hadamard matrices. Suppose we experiment during 3 days for 12-run PB
deisgn. How can we arrange the 12-runs into the three blocks? To solve the
problem, we apply G-MA criterion to nonregular mixed-level blocked scheme via
the mixed-level indicator function and give the answer for the question.

The rest of this article is organized as follows. Section 2 introduces the mixed-
level indicator function. Section 3 introduces the word ordering between pure-
type words and mixed-type words according to the hierarchical assumptions and
an appropriate ordering of the numbers of alias or confounding relations according

to the generalized minimum aberration criterion. Section 4 gives an example to
show how it works.

2. Mathematical Framework

2.1. Mixed-level indicator function

In an investigation on regular fractional factorial designs(FFD), the defining
contrasts subgroups play a vital role. They define and characterize design ma-
trices, describe how effects are aliased, and are used to develop criteria, such as
resolution and MA, for ranking designs. However, such mathematical structures
do not exist in nonregular designs.

In a general fractional factorial design, the n-levels of a factor are coded by
the n® roots of the unity. This device allows a full generalization to mixed-
level designs of the theory of the polynomial indicator function which has already
been introduced for two level designs by Ye (2003). Pistone and Rogantin (2007)
showed that design D can be represented by a unique polynomial form in many
aspects generalized the defining subgroup as follows;

Let Q™ and C™ be the set of all m-tuples of rational numbers and complex
numbers respectively, and each set of points D C Q™ be the set of solutions
of a system of polynomial equations. Each real valued function defined on D
is a polynomial function with coefficients into the field of real number R. Let
Ai = {ai5]lj = 1,...,n:} be factors and a;; level codes by rational numbers or
complex numbers so that D = A; x -+ x A,, in Q™ or C™ is to be full factorial
design. Then D is the solution set of the system of polynomial equations rewriting
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rules:
( ni—1
(X1 —a11)--- (X1 - a1n,) =0, X = Z Y Xt
(X2 — az1) -+ (X2 — azn,) = 0, =
. or A«
: nm—1
(Xm - aml) T (Xm - amnm) =0 Xpm = Z ¢ka7,f'L
. k=0

We code A; with the n;** roots of the unity in C, that is,

AjZan :{wkzexp('l,i—ﬂk) 4]{::0,...,71]'—1}.
J

Note that the mapping
Ly Sy, CC with k & wy

is a group isomorphism from the additive group of Z,, = {0,1,2,...,n—1}(mod n)
to the multiplicative group 2, C C. The full factorial design D, as a subset of
C™, is defined by the system of equations

G —1=0 for j=1,...,m.

The function X; : D > ((1,...,(m) = ¢ is called factor and we call X* =
X7 -« X% monomial response or interaction where a = (a1, ag, . . . ,an,) belongs
totheset L =Zp, X -+ X Zy,,.

With the Hermitian product f-g = (1/4D) > .cp F(O)g(0), the set {X?|a €
L} of all the monomial responses on D becomes an orthonormal basis of the
Hilbert space C(D) of all the complex valued functions on the full factorial design
D. Each function defined on full factorial design is represented in a unique way by
an identified complete regression model. (i.e. as a linear combination of constant,
simple terms and interactions)

A fraction F is a subset of a full factorial design D, that is, F € D. It
can be obtained by adding equations (generating equations) to restrict the set of
solutions. The indicator function I of a fraction F is a response defined on the
full factorial design D such that

)1, if (eF,
HO_{Q if (e D-F.
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In a fraction with replicates Fe, the counting function R is a response on the
full factorial design showing the number of replicates of a point (. They are
represented as polynomials:

IQ) =) baX®((), R(O) = caX*(C).
acL a€l

Since they are real valued, using the Hermitian product above, we can see that
the coefficients b, and ¢, satisfy the following properties(see [6] for details):

) 1
ba = E ZXQ(C) = b[—a]’ Ca = ﬁ—D Z Xa(c) = Cl—a]-

CEF CEFrep

2.2. Word-length pattern

In a blocked indicator function, we can see that there are two types of polyno-
mial terms with nonzero coefficients (i.e., words), one involving teatment factors
only and the other involving both block and treatment factors. Following the
same language as used in Cheng and Wu (2002), we call the former pure-type
words and the latter mized-type words.

Throughout the paper, we make four usual assumptions for blocked factorial
designs.

1. Lower-order factorial treatment effects are more likely to be significant than
higher-order factorial treatment effect.

2. Treatment effects of the same order are equally important.
3. Treatment effects are more likely to be significant than block effect.
4. Interactions between block factors and treatment factors are negligible.

5. Interactions between block factors are as important as the main effects of
block factors.

Under the assumptions, for blocked factorial designs, pure-type word and a
mixed-type word have the following desirability as shown in Zhang and Park
(2000).

ttt > tth > titt > ttttt > ttth > tttttt > ttttttt > tttth > - - - |

where > means ‘less desirable than’. In terms of the number and the order of
treatment effects affected by the words, #tb should be more desirable than ¢ttt and
less desirable than ttttt. These relations are used for the rest of the paper.
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According to the above word order desirability, let I'; ;(F') be the number of
words with non-zero coefficient in the indicator function where ¢ is the number
of treatment letters and b is the number of block letters of design F and define
the word-length pattern W (F) as

W(F) = (L30(F),T21(F),L40(F),Ts0(F), T3 1(F),Teo(F),...).

Definition 2.1 (Zhang and Park, 2000). Suppose Fy and F; are two blocked
FFDs with word-length pattern W (F1) and W (F3), respectively. Let my(Fy) and
my(F) be the I™ entries in W (F}) and W (Fy), respectively. Let k be the smallest
integer such that mi(F1) # me(Fy). If mg(F1) < mi(F2), it is said that Fy has
less aberration than Fy. If there is no design that has less aberration, then it is
said to have minimum aberration.

2.3. Generalized minimum aberration criterion

The aliasing(or confounding) relationship is reflected in its indicator function
through the coefficient of the factorial effect, like b123/bg in case of factorial effects
X1X> is aliased with X3. In fact, for regular FFDs, the polynomial terms in the
indicator function are the same words as used in the defining subgroup and all of
their |b;,. 4, /bo|’s equal to 1.

In the nonregular designs, it can be easily verified that some main effects
are partially alised with some factorial effects. In the indicator function, it can
be observed that |b;;. s, /bo| is between 0 and 1, which is correlation (i.e., inner
product) when the contrasts are partially aliased. A larger value of |b;,  /bol
indicates a stronger aliasing (or confounding) between effects associated with the
polynomial term. The value is called the aliasing index for pure-type words and
the confounding index for mixed-type words.

What should be mentioned here is the J-characteristic used by Deng and Tang
(2002) as building blocks in defining their G-MA criterion. The J-characteristics
of a design closely related to coefficients of its indicator function and can be
viewed as its orthogonality measure.

Definition 2.2 (Deng and Tang, 2002). A fractional design, reqular or non-
regular, is denoted by F with n runs and is regarded as a set of m columns
F ={dy,...,dpn} or as an n x m matriz F = ((d;j)). For 1 <k <m and any
k-subset s = {dj,,...,d;,} of F define the J-characteristic as follows:

Z dij, - - - dij,
i=1

Jk(s) = Jk(djl, ey djk) =
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For mixed-level design with complex coding, the basic formula of J-characteri-
stic is valid, but if one of d; of the subset s is coded by complex coding, the value
of 3%, dij, -+ dij, will be a complex number, denoted by a + bi. Then, the
absolute value is computed in a little different way. The fundamental idea of
the absolute value is the length. On the complex plane, the length of a + bi is
computed as ||a + bi|| = Va2 + b2. In this sense, we redefine the J-characteristic
for mixed level with complex coding by

Jk(s) = Jk(dj17 . ’djk) -

n
E :dijl e 'dijk
=1

As a result, J-characteristic for mixed-level design implies that of symmetric
designs. If a design has zero value of J-characteristic, it means that the design is
orthogonal and design points are distributed uniformly. If not, it means the design
points are distributed ununiformly somewhere. Moreover, as the J-characteristic
value is higher, ununiformity is more serious.

Let |s| be a cardinality of the set s. For a design F, regular or nonregular, let
r be the smallest integer such that maxs—, J-(s) > 0, where the maximization is

over all the subset of r distinct columns of F. We define its generalized resolution
to be

R(F)=r+|1- gl’aX(Jr(S))/n :

=T
Clearly, r < R(F) < r + 1. For orthogonal design, we have R(f) > 3. According
to this criterion, a design with higher generalized resolution is preferred. As
before, it is sometimes desirable to define resolutions for aliasing and confounding
separately. We define the treatment resolution (R;) as the generalized resolution
over the pure-type words of the smallest word length and the block resolution
(Rp) as the generalized resolution over the mixed-type words of the smallest word
length.

For those words with the same order, G-MA compares the frequencies of
words with the same J-characteristic value. Suppose that two nonregular factorial
designs F, and F, have the same generalized resolution. If the frequency of
combinations of r distinct columns that attain max|sj— Jr(s) > 0 in Fy is lower
than that in F3, then the design F} is preferred. If the two frequencies are the
same, compare the frequency of combinations of r distinct columns that attain
the second largest J,(s) value of the two designs. This process is continued until
the two designs can de distinguished.
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Since designs have finite points with finite levels, the number of all the possible
values of J,.(s) is finite. Therefore we can list up the frequencies of combinations of
r distinct columns that attain the possible values of J,.(s) in descending order. In
this way, we define the word length frequency vector by T'yy(F) = (fep1,---» fepj)
for the words of same order with ¢ the number of its treatment letter and b the
number of its block letter, where f; ;) is the frequency of combinations of r
distinct columns that attain the k%" value of J.(s). Note that the number j of
the component f; 5 ; varies but finite. Finally the confounding frequency vector
of the design F is defined as follow

WIF] = [[3,0(F); T2,1(F); Ta0(F); Ts0(F); T3,1(F); Te0(F);---].

Definition 2.3 (Tang and Deng, 1999). Let Fy and F; are two fractional
designs and fi(F1) and fi(Fy) be the I entries in the confounding frequency
vectors of F1 and Fy, respectively. Let k be the smallest integer such that fix(F1) #
fe(F2). If fu(F1) < fr(F3), it is said that Fy has less generalized aberration than
F,. If there is no design that has less generalized aberration, then it is said to
have generalized minimum aberration.

3. The Optimal Blocking 12-run PB Design into Three Blocks

In this section we consider p treatment factors from the 12-run PB design and
assign them into three blocks with complex coding, denoted by 1, w; and ws. A
pair of columns in a matrix are called orthogonal if all possible combinations of
levels in the two columns appear equally often. If the orthogonality between
treatment effect and blocking effect of a design is violated, it implies that a main
factorial effect and a block effect are confounded for the given blocking scheme
and it is not desirable. Therefore we focus only on the blocked designs whose
block factor and treatment factors form an orthogonal array.

There are 34,650 possible arrangements in three block case. Among them,
we only focus on the orthogonal arrangements. We programmed by <Microsoft
visual C++ 6.0> for the choices. As a result, we found that the possible choices
of blocking schemes with orthogonality with p = 3 are 300 and with p = 4 are 36
respectively. However, there are no blocking scheme having orthogonality with
p 2> 5. As we mentioned, we should only focus on the cases of designs whose
treatment main effect and block effect are orthogonal. Thus, in this paper, we
only consider the mixed-level designs with p = 3 and p = 4. Even if there are
many arrangements for each case, there exist two types of indicator functions
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when p = 3, whereas only one type exists when p = 4 with respect to the word-
length and the corresponding coefficients. When p = 3, two 233!-designs are
given in Table 3.2 and Table 3.3. Also, a design in Table 3.6, denoted by 243!, is
an example of only type when p = 4.

3.1. Optimal blocking scheme with p =3

Suppose we take first three (p = 3) columns from the 12-run PB design and
assign into three blocks with complex coding, denoted by 1, wy and wo. Table
3.2 and Table 3.3 represent possible two different blocking schemes.

Table 3.1: 12-run PB design

n factor | x| Xa | Xa | Xa | Xs | Xo | Xo | Xs | Xo | X0 | Xus
1 1 1| -1 1 1 1| -1(-11{-1 1 -1
2 -1 1 1 (-1 1 1 1| -1 -1 -1 1
3 1 -1 1 1| -1 1 1 1] -1 -1 -1
4 -1 1| -1 1 1| -1 1 1 1 -1 -1
5 -1 —-1 1 -1 1 1| -1 1 1 1 -1
6 -1 -1 -1 1] -1 1 11 -1 1 1 1
7 1} -11{-14{-1 1] -1 1 11— 1 1
8 1 1| -1} -17] -1 14 -1 1 -1 1
9 1 1 1{-1}-1] -1 1] -1 1 -1
10 -1 1 1 1 (-1 ~-1] -1 1| - 1 1
11 1] -1 1 1 1] -1} -1{-1 -1 1
12 -1 -1({-1]-1|-1]-1}-1}-1] 1 -1 -1

Assign the block factor, denoted by B, into the last column of F; and F5.
Then the 12 runs in F; and F; are divided into three blocks, each of size four.
In its (unblocked) indicator functions, we replace x4 by B to indicate the factor
that is used for blocking. Then the indicator functions for the blocked design Fj

and F5 are as follows:

1
IF1 (IL') = ﬁ{12 —4X1 X2 X3 + (—4’LU1 + 4wy — 4)X1X2X3B
+(4wy — dwg — 4) X1 X2 X3B?},

1
IF2 (CL‘) = —2—4{12 —4X1X2X3 + (4w1 — 4’LU2)X2X3B

+(—4wy + 4wq) X2 X3B% — 4X1 X, X3 B — 4X; X2 X3B%}.

The word-length patterns are

W(Fl) = (17 07 07 07 2)7

W(F) = (1,2,0,0,2).

(3.1)



492 DongKwon Park, HyoungSoon Kim and HeeKyoung Kang

Table 3.2: 12-run 233! design F;  Table 3.3: 12 run 233! design F

factor x| %! x| B factor | x| x| B
run . run

1 1 1({-1}11 1 1 1({-1]1
2 -1 1 1 1 2 -1 1 1 1
3 1] -1 1] 1 3 1] -1 11
4 -1 1] -1| w 4 -1 1] -1} w
5 -1 -1 1 w1 5 -1 -1 1 w1
6 -1 -1(-1]1 6 -1 -1]-1] 1
7 1 -1 -1]w 7 1 -1 -1]| w
8 1 1 -1 ws 8 1 1 -1]w
9 1 1 w1 9 1 1 wso
10 -1 1| we 10 -1 1 1| we
11 1| -1 1] we 11 1] -1 1| wn
12 -1 -1 -1 we 12 1| -1 1| ws

Both of two designs have only one ttt-type word , but F5 has more ttb-type
words than F;. Therefore F; has less aberration than F3, and as the minimum
aberration criterion, F7 can be referred to the optimal design for mixed-level with
p = 3. To find the optimal design, we only need to compare word-length pattern
rather than compare the confounding frequency vectors to apply G-MA criterion.

Table 3.4: Coefficients and J-characteristics of F

word coefficient Ji(8)
X1 X5X3 —4 4
X1X2X33 —4'[1}1 + 4’!.U2 —4 8
X1X2X332 +4w1 — 4’(.02 —4 8

Table 3.5: Coefficients and J-characteristics of Iy

word coefficient | Jx(s)
X1X2X3 —4 4

X, X3B 4w —dws | 43

XoX3B? | —dwy +4ws | 43
X1 X, X3B -4 4
X1X,X3B2 —4 4
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The J-characteristics are the index of how uniformly design points are dis-
tributed. For the design F}, we can find out one ttt-type word is distributed
more uniformly than tt¢b-type words as shown in Table 3.4. Whereas for Fy, the
words of type ttt and tttb are distributed uniformly with the same degree, but
ttb-type words are distributed less uniformly as shown in Table 3.5. Table 3.4
and Table 3.5 show the coefficients for terms in the indicator functions (3.1) and
their J-characteristics. We can easily see that R(Fy) = Ry(Fy) = 3+ (1—4/12) =
3.67, Ry(F1) = 4+(1—8/12) = 4.33, Ry(F2) = 3+(1—4/12) = 3.67, and R(F,) =
Ry(Fp) =3 + (1 — 4v/3/12) = 3.42.

3.2. Optimal blocking scheme with p =4

Table 3.6: 12 run 243! design F3

factor X X% | X | x.| B
run

1 1 1 -1 101
2 -1 1 1|1 -1 1
3 1] -1 1 11
4 -1 1] -1 1| wn
5 -1 -1 1 -1] w
6 -1 -1} -1 1| w2
7 1 -1}{-1]—-1/|we
8 1 1| -1 -1 wu
9 1 1 1| -1 we
10 -1 1 1 1| we
11 1| -1 1 1| w
12 -1 -=-1f{-1]-1;1

The indicator function of F3 becomes

Ip,(z) = i{lQ —4X1 X2 X3+ (4 — 4w) X1 X4 B + (4 — 4wy) X1 X, B2
+(4wy — 4w2) X2 X3B + (—dw + dwz) X2 X3 B?
—4X1X2X3B — 4X1 X2 X3B% — 4wy X1 X2 X4 B
—4w1 X1 X2 X4B? + 4wo X1 X3 X4 B + 4w X1 X3 X4 B
~4X2X3X4B — 4X,X3X,B?
— 4w X1 X2 X3X4B — 4wy X1 X2 X3X4B?}. (3.2)

All possible arrangements of block factor that satisfying orthogonality have
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the same type of indicator function as in (3.2). Therefore it is not necessary to
derive the word length pattern or J-characteristics. The word length pattern is
derived as a reference.

W (Fs) = (1,4,0,0,8,0,0,2)

Also J-characteristics are derived in Table 3.7 below. All the words except
for ttb-type are aliased in the same degree, and ttb type words are distributed
less uniformly than the others. We also see that R;(F3) = 3 + (1 — 4/12) =
3.67 and R(F3) = Ry(F3) = 3+ (1 — 4v/3/12) = 3.42.

Table 3.7: Coefficients and J-characteristics of F3

word coefficient | Ji(s) word coefficient | Ji(s)
X1X2X3 —4 4 X1X2X4B —4’11)2 4
X1X4B 4 — 4’11}1 4\/3 X1X2X4B2 —4’1111 4
X1X432 4 — 4w2 4\/5 X1X3X4B 4’LU2 4
X2X3B 4wy —4ws | 4V/3 | X1X3X,B? 4w, 4
X2X3B? | 4w +4ws | 43 X2 X3X4B -4 4
X1X,X3B —4 4 X2X3X,B? —4 4
X1X2X3B2 —4 4 X1 X2X3X4B -4 4
X1X2X3X4B? —4 4
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