A Study of Structural Stability and Dynamics for Functionally Graded Material Plates and Shells using a 4-node Quasi-conforming Shell Element

4절점 준적합 쉘 요소를 이용한 점진기능재료(FGM) 판과 쉘의 구조적 안정 및 진동 연구

  • 한성천 (대원과학대학 토목과) ;
  • 이창수 (서울시립대학교 토목공학과) ;
  • 김기동 (공주대학교 건설환경공학부) ;
  • 박원태 (공주대학교 건설환경공학부)
  • Published : 2007.12.31

Abstract

In this paper, we investigate the natural frequencies and buckling loads of functionally graded material (FGM) plates and shells, using a quasi-conforming shell element that accounts for the transverse shear strains and rotary inertia. The eigenvalue of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane, bending and shear stiffness of FGM shell element are more complicated combination of material properties than a homogeneous element. In order to validate the finite element numerical solutions, the Navier's solutions of rectangular plates based on the first-order shear deformation theory are presented. The present numerical solutions of composite and sigmoid FGM (S-FGM) plates are proved by the Navier's solutionsand various examples of composite and FGM structures are presented. The present results are in good agreement with the Navier's theoretical solutions.

본 논문에서는 전단변형률과 회전관성을 고려한 준적합 쉘 요소를 이용한 점진기능재료 판과 쉘의 고유진동수와 좌굴하중을 연구하였다. S 형상 함수를 이용한 세라믹과 금속의체적요소의 변화에 따른 점진기능재료 판과 쉘의 고유치 문제를 연구하였다. 점진기능재료 쉘 요소의 면내 강성, 휨 강성 및 전단 강성의 수식은 등질 요소보다 복잡한 재료의 성질들로 결합되어 있다. 유한요소의 수치적 결과를 검정하기 위해 1차 전단변형 이론에 의한 직사각형 판의 Wavier해를 제시하였다. 적층복합 구조 및 S 형상 점진기능재료 구조의 수치해석해는 Navier의 해로 검증하였으며, S 형상 점진기능재료 구조물의 다양한 예제를 제시하였다. 해석결과는 Navier의 이론해와 아주 잘 일치함을 알 수 있었다.

Keywords

References

  1. 한성천, 유용민, 박대용, 장석윤 (2002) 개선된 고차이론을 이용한 복합재료 적층구조물의 탄성 및 점탄성적 휨, 진동해석. 한국강구조학회 논문집, 한국강구조학회, 제14권, 제1호, pp. 1-12
  2. 한성천, 최삼열 (2004) 변형률 보간 9절점 쉘 요소를 이용한 적층복합판 과 쉘의 선형 정적 해석 및 자유진동 해석. 한국전산구조공학회 논문집, 한국 전산구조공학회, 제16권, 제3호, pp. 32-37
  3. Allman, D. J. (1988) A Quadrilateral Finite Element including Vertex Rotation for Plane Elasticity Analysis. Int. J. Numer. Meth. Eng., Vol. 26, pp. 717-730 https://doi.org/10.1002/nme.1620260314
  4. Bao, G. and Wang, L. (1995) Multiple Cracking in Functionally Graded Ceramic/metal Coatings. Int. J. Solids Struct., Vol. 32, pp. 2853-2871 https://doi.org/10.1016/0020-7683(94)00267-Z
  5. Chi, S. H. and Chung, Y. L. (2002) Cracking in Sigmoid Functionally Graded Coating. J. Mech. Vol. 18, pp. 41-53
  6. Chung, Y. L. and Chi, S. H. (2001) The Residual Stress of Functionally Graded Materials. J. Chinese Institute of CiVIl and Hydraulic Engineering, Vol. 13, pp. 1-9
  7. Delale, F. and Erdogan, F. (1983) The Crack Problem for a Nonhomogeneous Plane. J. Appl. Mech., ASME, Vol. 50, pp. 609-614 https://doi.org/10.1115/1.3167098
  8. Han, S. C., Choi, S. and Park, W. T. (2007) The Effect of Varying the In-plane Loads and Stacking Sequence on the Vibration Analysis of Composite Stiffened Plates. Science and Engineering of Composite Materials, in print
  9. Hirano, T. and Yamada, T. (988) Multiparadigm Expert System Architecture based upon the Inverse Design Concept. International Workshop on Artificial Intell- igence forlndustrisl Applications, Hitachi, Japan
  10. Jaunky, N., Knight, Jr. N. F. and Arnbur, D. R. (1999) Buckling Analysis of Variable Curvature Panels and Shells. Compos. Struct., Vol. 43, pp. 321-329 https://doi.org/10.1016/S0263-8223(98)00118-4
  11. Kant, T. and Swaminathan, K. (2001) Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory. Compos. Struct., Vol. 53, pp. 73-85 https://doi.org/10.1016/S0263-8223(00)00180-X
  12. Kim, K. D., Lee, C. S. and Han, S. C. (2007) A 4-node Co-rotational ANS Shell Element forLaminated Composite Structures. Composite Structures,Vol. 80, No.2, pp. 234-252 https://doi.org/10.1016/j.compstruct.2006.05.003
  13. Kim, K. D., Lornboy, G. R. and Han, S. C. (2003) A Co-rotational 8-node Assumed Strain Shell Element for Postbuckling Analysis of Laminated Composite Plates and Shells. Comput. Mech., Vol. 30, No.4, pp. 330-342 https://doi.org/10.1007/s00466-003-0415-6
  14. Lee, Y. D. and Erdogan, F. (1995) Residual/ thermal Stress in FGM and Laminated Thermal Barrier Coatings. Int. J. Frec., Vol. 69, pp. 145-165 https://doi.org/10.1007/BF00035027
  15. Pan, E. (2003) Exact Solution for Functionally Graded Anisotropic Elastic Composite Laminates. J. Compos.Mater., Vol. 37, No. 21, pp. 1903-1920 https://doi.org/10.1177/002199803035565
  16. Park, T. H., Kim, K. D. and Han, S. C. (2006) Linear Static and Dynamic Analysis of Laminated Composite Plates and Shells using a 4-node Quasi-conforming Shell Element. Compos. Part B-Eng., Vol. 37, No. 2-3, pp. 237-248 https://doi.org/10.1016/j.compositesb.2005.05.007
  17. Praveen, G. N. and Reddy, J. N. (1988) Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-metal Plates. Int. J. Solids Struct., Vol. 35, pp. 4457-4476 https://doi.org/10.1016/S0020-7683(97)00253-9
  18. Reddy, J. N. (1979) Free Vibration of Antisymmetric, Angle-ply Laminated Plates including Transverse Shear Deformation by the Finite Element Method. J. Sound Vibr., Vol. 66, No.4, pp. 565-576 https://doi.org/10.1016/0022-460X(79)90700-4
  19. Reddy, J. N. (2004) Mechanics of composite plates and shells: Theory and Analysis, 2nd edn. CRC press, Boca Raton
  20. Rikards, R. (2001) A. Chate and O. Ozolinsh, Analysis for Buckling and Vibrations of Composite Stiffened Shells and Plates. Compos. Strucut., Vol. 51, pp. 361-370 https://doi.org/10.1016/S0263-8223(00)00151-3
  21. Tang, L. M., Chen, W. J. and Liu, Y. X. (1984) Formulation of Quasi -conforming Element and Hu-Washizu Principle. Comput. Struct., Vol. 19, No. 1-2, pp. 247-250 https://doi.org/10.1016/0045-7949(84)90224-4
  22. XFINAS 3.0. (Konkuk University, Korea, 2007) Available from:
  23. Xiang, Y. and Su, G. H. (2002) Buckling of Rectangular Plates with Mixed Edge Supports. Struct. Eng. Mech., Vol. 14, pp. 401-416 https://doi.org/10.12989/sem.2002.14.4.401
  24. Zeng, H. and Bert, C. W. (2001) A Differential Quadrature Analysis of Vibration for Rectangular Stiffened Plates, J. Sound Vibr., Vol. 241, No.2, pp. 247-252 https://doi.org/10.1006/jsvi.2000.3295
  25. Zenkour, A. M. (2005) On Vibration of Functionally Graded Plates according to a Refined Trigonometric Plate Theory. Int. J. Struct. Stab. Dyns., Vol. 5, No.2, pp. 279-297 https://doi.org/10.1142/S0219455405001581