Pulp and periodontal tissue changes following rapid tooth retraction by periodontal distraction in young adult dogs

유성견에서 periodontal distraction에 의한 급속 치아견인 시 치수 및 치주조직의 변화에 관한 연구

  • Lee, Jong-Jin (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Hong, Hyun-Sil (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Chae, Jong-Moon (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Jo, Jin-Hyung (Department of Orthodontics, School of Dentistry, Wonkwang University) ;
  • Kim, Sang-Cheol (Department of Orthodontics, School of Dentistry, Wonkwang University)
  • 이종진 (원광대학교 치과대학 치과교정학교실) ;
  • 홍현실 (원광대학교 치과대학 치과교정학교실) ;
  • 채종문 (원광대학교 치과대학 치과교정학교실) ;
  • 조진형 (원광대학교 치과대학 치과교정학교실) ;
  • 김상철 (원광대학교 치과대학 치과교정학교실)
  • Published : 2007.10.31

Abstract

The aim of this study was to evaluate pulp and periodontal changes following rapid tooth retraction by periodontal distraction after bone undermining surgery in young adult dogs. Methods: Alter extraction of second premolars, the interseptal bone mesial to the upper 3rd premolar was undermined. After activating the distraction appliance at 0.5 mm/day for six days, the dogs were sacrificed at 0, 1, 3, 5, 7, and 9 weeks during the consolidation period. Tissue changes of periodontium and pulp were evaluated radiologically, histologically, and immunohistochemically. Results: Digital subtraction radiography showed active bone formation in the stretched periodontal ligament from 0 - 4 weeks. Resorption of the alveolar bone, appearance of osteoclasts, and infiltration of inflammatory cells were observed just after the activation period at the pressure side, and distinctive bone formation was seen in the tension side of the periodontal ligament from 1 week. New bone formation was active at 1 - 3 weeks. The expression of calcitonin gene-related peptide in the experimental group was increased at the alveolar bone and pulp, and periodontal ligament at the pressure side from 0 - 1 week, and it decreased after 5 weeks to become similar to that of the control group. Conclusions: The results showed that rapid tooth movement using periodontal distraction can be new form of orthodontic tooth movement for accelerating normal bone formation.

유성견에서 periodontal distraction 과정을 통해 급속 견인 후에 치수와 치주조직의 변화를 평가하였다. 유성견의 상악 제2소구치를 발거하고 제3소구치 근심의 치간골을 부분 제거하였다. 견인장치는 6일 동안 하루에 2번씩 견인하고, 강화기 동안 0주, 1주, 3주, 5주, 7주, 9주에 치수와 치주조직의 변화를 임상적, 방사선학적, 조직학적, 면역조직화화학적으로 관찰하였다. 신장된 치주인대 내에서 견인 직후부터 4주까지 활발한 골밀도 증가를 보였으며, 특히 2-3주 사이에서 가장 활발하였다. 강화기 0주에 압박측 치조골의 흡수 및 파골세포 출현, 염증세포 침윤이 가장 많이 관찰되었고 1주의 신장측 치주인대에서 특징적인 골형성을 보이기 시작하였다. 신생골 형성은 1주와 3주에 가장 많이 관찰되었으며 9주에는 성숙골로의 대치 및 치주인대의 재생으로 대조군과 차이가 없었다. 실험군의 calcitonin gene-related peptide의 발현은 치수, 치주인대 내의 염증 부위에서 나타났으며 0주, 1주에 압박측 치주인대에서 증가하였다가 5주 이후에는 감소하여 대조군과 차이가 없었다. 이상과 같은 소견은 periodontal distraction에 의한 급속 치아 이동이 정상적인 골 재형성 과정을 도모하는 새로운 치아이동 방법이 될 수 있음을 시사한다.

Keywords

References

  1. Liou EJ, Huang CS. Rapid canine retraction through distraction of the periodontal ligament. Am J Orthod Dentofac Orthop 1998;114:372-82 https://doi.org/10.1016/S0889-5406(98)70181-7
  2. Codivilla A. On the means of lengthening, in the lower limbs the muscles and tissues which are shortened through deformity. Clin Orthop Relat Res 1994;301:4-9
  3. llizarov GA. The tension-stress effect on the genesis and growth of tissue: Part I. The influence of stability on fixation and soft-tissue preservation. Clin Orthop Relat Res 1989;238:249-81
  4. llizarov GA. The tension-stress effect on the genesis and growth of tissue: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 1989;239:263-85
  5. Snyder CC, Levine GA, Swanson HM, Browne EZ Jr. Mandibular lengthening by gradual distraction: Preliminary report. Plast Reconstr Surg 1973;51:506-8 https://doi.org/10.1097/00006534-197305000-00003
  6. McCarthy JG, Schreiber J, Karp N, Thome CH, Grayson BH. Lengthening of the human mandibular by gradual distraction. Plast Reconstr Surg 1992;89:1-8 https://doi.org/10.1097/00006534-199289010-00001
  7. Moore MH. Guzman-Stein G, Proudman TW, Abbott AH, Netherway DJ, David DJ. Mandibular lengthening by distraction for airway obstruction in Treacher-Collins syndrome. J Craniofac Surg 1994;5:22-5 https://doi.org/10.1097/00001665-199402000-00006
  8. Guerrero C. Rapid mandibular expansion. Rev Venez Ortod 1990;48:1-2
  9. Rachmiel A, Potparic Z, Jackson IT, Sugihara T, Clayman L, Topf JS, et al. Midface advancement by gradual distraction. Br J Plast Surg 1993;46:201-7 https://doi.org/10.1016/0007-1226(93)90169-C
  10. Altuna G, Walker DA, Freeman E. Surgically assisted rapid orthopedic lengthening of the maxilla in primates-relapse following distraction osteogenesis. Int J Adult Orthodon Orthognath Surg 1995;10:269-75
  11. Stromberg C, Holm J. Surgically assisted rapid maxillary expansion in adults. A retrospective long-term follow-up study. J Craniomaxillofac Surg 1995;23:222-7 https://doi.org/10.1016/S1010-5182(05)80211-2
  12. Cohen SR, Burstein FD, Stewart MR, Rathburn MA. Maxillary-midface distraction in children with cleft lip and palate: a preliminary report. Plast Reconstr Surg 1997;99:1421-8 https://doi.org/10.1097/00006534-199704001-00036
  13. Tschakaloff A, Losken HW, Mooney Mr, Siegel MI, Losken A, Swan J. Internal calvarial bone distraction in rabbits with experimental coronal suture immobilization. J Craniofac Surg 1994;5:318-26 https://doi.org/10.1097/00001665-199411000-00011
  14. Stucki-McCormick SU. Reconstruction of the mandibular condyle using transport distraction osteogenesis. J Craniofac Surg 1997;8:48-53 https://doi.org/10.1097/00001665-199701000-00016
  15. Rachmiel A, Srouji S, Peled M. Alveolar ridge augmentation by distraction osteogenesis. lnt J Oral Maxillofac Surg. 2001;30:510-7 https://doi.org/10.1054/ijom.2001.0134
  16. Gantes B, Rathbun E, Anholm M. Effects on the periodontium following corticotomy-facilitated Orthodontics. J Periodontol 1990;61:234-8 https://doi.org/10.1902/jop.1990.61.4.234
  17. Kole H. Surgical operations on the alveolar ridge to correct occlusal abnormalities. Oral Surg Oral Med Oral Path 1959;12:515-29 https://doi.org/10.1016/0030-4220(59)90153-7
  18. Lee BS, Hwang HW, Chung KR Clinical use of corticotomies in adult orthodontics. J Korean Assoc Maxillofac Plast Reconstr Surg. 1999;21:303-311
  19. Chung KR, Oh MY, Ko SJ. Corticotomy-assisted orthodontics. J Clin Orthod 2001;35:331-9
  20. Suya H. Corticotomy in orthodontics. In: Hosl E, Baldauf A, eds. Mechanical and Biological Basics in Orthodontic Therapy. Heidelberg, Germany: Huthig Buch Verlag; 1991. p. 207-26
  21. Mostafa YA, Tawfik KM, EI-Mangoury NH. Surgical-orthodontic treatment for overerupted maxillary molars. J Clin Orthod 1985;19:350-1
  22. Goldson L, Reck VJ. Surgical-orthodontic treatment of malpositioned cuspids. J Clin Orthod 1987;21:847-51
  23. Duker J. Experimental animal research into segmental alveolar movement after corticotomy. J Maxillofac Surg 1975;3:81-4 https://doi.org/10.1016/S0301-0503(75)80022-1
  24. Yoshikawa Y, Deguchi T, Eda S. Pulpal and radicular changes following maxillary subapical corticotomy. Endod Dent Traumatol 1992;8:245-7 https://doi.org/10.1111/j.1600-9657.1992.tb00252.x
  25. William R. Proffit. Contemporary orthodontics: third edition, St Louis: Mosby; 2000. p. 296-301
  26. Reitan K. Tissue behavior during orthodontic tooth movement. Am J Orthod 1960;46:881-900 https://doi.org/10.1016/0002-9416(60)90091-9
  27. Hughes TH, Maffulli N, Green V, Fixsen JA. Imaging in bone lengthening. A review. Clin Orthop Relat Res 1994;308:50-3
  28. Petrikowski CG, Elbadrawy HE, Boehlau EE, Grace MG. Interobserver variability in radiographic interpretation of pediatric dental diseases: a pilot study. J Can Dent Assoc 1996;62:723-30
  29. Gelfand M, Sunderman EJ, Goldman M. Reliability of radiographical interpretations. J Endod 1983;9:71-5 https://doi.org/10.1016/S0099-2399(83)80079-X
  30. van der Stelt PF, Ruttimann UE, Webber RL. Determination of projections for subtraction radiography based on image similarity measurements. Dentomaxillofac Radiol 1989;18:113-7 https://doi.org/10.1259/dmfr.18.3.2700350
  31. van der Stelt PF. Experimentally produced bone lesions. Oral Surg Oral Med Oral Pathol 1985;59:306-12 https://doi.org/10.1016/0030-4220(85)90172-0
  32. Hausmann E, McHenry K, Christersson L, Rosling B, Ortman LF. Techniques for assessing alveolar bone mass changes in periodontal disease with emphasis on 125I absorptiometry. J Clin Periodontol 1983;10:455-64 https://doi.org/10.1111/j.1600-051X.1983.tb02178.x
  33. Webber RL, Horton RA, Underhill TE, Ludlow JB, Tyndall DA. Comparison of film, direct digital and tuned-aperture computed tomography images to identify the location of crestal defects around endosseous titanium implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;81:480-90 https://doi.org/10.1016/S1079-2104(96)80029-1
  34. Karp NS, McCarthy JG, Schreiber JS, Sissons HA, Thome CH. Membranous bone lengthening: A serial histological study. Ann Plast Surg 1992;29:2-7 https://doi.org/10.1097/00000637-199207000-00002
  35. Ganey TM, Klotch DW, Sasse J, Ogden JA, Garcia T. Basement membrane of blood vessels during distraction osteogenesis. Clin Orthop Relat Res 1994;301:132-8
  36. Yasui N, Sato M, Ochi T, Kimura T, Kawahata H, Kitamura Y, Nomura S. Three modes of ossification during distraction osteogenesis in the rat. J Bone Joint Surg Br 1997;79:824-30 https://doi.org/10.1302/0301-620X.79B5.7423
  37. Brighton CT, Hunt RM. Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am 1991;73:832-47 https://doi.org/10.2106/00004623-199173060-00006
  38. Lee DH, Chung KR. A light and electron microscopic study of changes in intermaxillary suture during the rapid maxillary expansion of young adult dogs. Korean J Orthod 1996;26:153-62
  39. Reitan K, Kvam E. Comparative behavior of human and animal tissue during experimental tooth movement. Angle Orthod 1971;41:1-14
  40. Macapanpan LG, Weinmann JP, Brodie AG. Early tissue changes following tooth movement in rats. Angle Orthod 1954;24:79-95
  41. Azuma M. Study on histologic changes of periodontal membrane incident to experimental tooth movement. Bull Tokyo Med Dent Univ 1970;17:149-78
  42. Ryu PD, Gerber G, Murase K, Randic M. Calcitonin gene-related peptide enhances calcium current of rat dorsal root ganglion neurons and spinal excitatory synaptic transmission. Neurosci Lett 1988;89:305-12 https://doi.org/10.1016/0304-3940(88)90544-7
  43. Hammond DL, Ruda MA. Developmental alterations in the thermal nociceptive threshold and the distribution of immunoreactive calcitonin gene-related peptide and substance P after neonatal administration of capsaicin in the rat. Neurosci Lett 1989;97:57-62 https://doi.org/10.1016/0304-3940(89)90139-0
  44. Maggi CA, Giuliani S. The neurotransmitter role of calcitonin gene-related peptide in the rat and guinea-pig ureter: effects of a calcitonin gene-related peptide antagonist and species related differences in the action of omega conotoxin on calcitonin gen-related peptide release from primary afferents. Neuroscience 1991;43:261-8 https://doi.org/10.1016/0306-4522(91)90433-O
  45. Saito I, Ishii K, Hanada K, Sato O, Maeda T. Response of calcitonin gene-related peptide-immunoreactive nerve fibres in the periodontal ligament of rat molars to experimental tooth movement. Arch Oral Biol 1991;36:689-92 https://doi.org/10.1016/0003-9969(91)90023-N
  46. Kim BK, Park KP, Kyung HM, Kwon OW, Sung JR. Changes in CGRP-immunoreactive nerve fibers during expansion of midpalatal suture of the rat. Korean J Orthod 1999;29:73-81
  47. Kvinnsland I, Kvinnsland S. Changes in CGRP-immunoreactive nerve fibers during experimental tooth movements in rats. Eur J Orthod 1990;12:320-9 https://doi.org/10.1093/ejo/12.3.320
  48. Davidovitch Z, Nicolay OF, Ngan PW, Shanfeld JL. Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dental Clinics of North Am 1988;32:411-35
  49. Davidovitch Z. Tooth movement. Crit Rev Oral BioI Med 1991;2:411-50 https://doi.org/10.1177/10454411910020040101