Mizoribine Inhibits Production of Pro-inflammatory Cytokines and $PGE_2$ in Macrophages

  • Published : 2007.03.30

Abstract

Background: Mizoribine (MZR) is an imidazole nucleoside isolated from Eupenicillium brefeldianum. MZR is currendy in clinical use for patients who have undergone renal transplantation. Therapeutic efficacy of MZR has also been demonstrated in rheumatoid arthritis and lupus nephritis. MZR has been shown to inhibit the proliferation or lymphocytes by interfering with inosine monophosphate dehydrogenase. Since the exact mechanism by which MZR benefits rheumatoid arthritis (RA) is not clear, we investigated the ability of MZR to direct its immunosuppressive influences on other antigen presenting cells, such as macrophages. Methods: Mouse macrophage RAW264.7 cells were stimulated with lipopolysaccharide in the presence of MZR. To elucidate the mechanism of the therapeutic efficacy in chronic inflammatory diseases, we examined the effects of MZR on the production of pro-inflammatory cytokines, nitric oxide (NO) and prostaglandin $E_2\;(PGE_2)$ in macrophages. Results: MZR dose-dependendy decreased the production of nitric oxide and pro- inflammatory cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukins $1{\beta}$ (IL-${\beta}$ and IL-6 $PGE_2$. Examination of gene expression levels showed that the anti-inflammatory effect correlated with the down-regulation of inducible nitiric oxide synthase expression, cycloxygenase-2 expression and TNF-${\alpha}$ gene expression. Conclusion: In this work, we resulted whether MZR $(1.25{\sim}10{\mu}g/ml)$ inhibited macrophage activation by inhibiting secretion of pro-inflammatory cytokines, NO and $PGE_2$. These findings provide an explanation for the therapeutic efficacy of MZR in chronic inflammation-associated diseases.

Keywords

References

  1. Ross JA, Auger MJ, In Burke B, Lewis CE: The biology of the macrophage. In: Burke B, Lewis CE eds.: The macrophage. 2nd ed, p1-72, Oxford Medical Publications, Oxford, UK, 2002
  2. Nathan C: Inducible nitric oxide synthase: what difference does it make? J Clin Invest 100;2417-2423, 1997 https://doi.org/10.1172/JCI119782
  3. Bogdan C: Nitric oxide and the immune response. Nat Immunol 2; 907-916, 2001 https://doi.org/10.1038/ni1001-907
  4. Vila-Del Sol V, Fresno M: Involvement of TNF and NF-{kappa}B in the transcriptional control of cyclooxygenase-2 expression by IFN-{gamma} in macrophages. J Immunol 174; 2825-2833, 2005 https://doi.org/10.4049/jimmunol.174.5.2825
  5. Isomaki P, Punnonen J: Pro-and anti-inflammatory cytokines in rheumatoid arthritis. Ann Med 29;499-507, 1997 https://doi.org/10.3109/07853899709007474
  6. Libby P, Ridker PM, Maseri A: Inflammation and atherosclerosis. Circulation 105;1135-1143, 2000 https://doi.org/10.1161/hc0902.104353
  7. Tilg H, Wilmer A, Vogel W, Herold M, Nolchen B, Judmaier G, Huber C: Serum levels of cytokines in chronic liver diseases. Gastroenterology 103;264-274, 1992 https://doi.org/10.1016/0016-5085(92)91122-K
  8. Coker RK, Laurent GJ: Pulmonary fibrosis: cytokines in the balance. Eur Respir J 11;1218-1221, 1998 https://doi.org/10.1183/09031936.98.11061218
  9. Chenevier-Gobeaux C, Morin-Robinet S, Lemarechal H, Poiraudeau S, Ekindjian JC, Borderie D: Effects of pro- and anti-inflammatory cytokines and nitric oxide donors on hyaluronic acid synthesis by synovial cells from patients with rheumatoid arthritis. Clin Sci 107;291-296, 2004 https://doi.org/10.1042/CS20040104
  10. Nishimoto N: Cytokine signal regulation and autoimmune disorders. Autoimmunity 38;359-367, 2005 https://doi.org/10.1080/08916930500124106
  11. Zhong B, Tajima M, Takahara H, Nochi H, Tamoto K, Tamura N, Kobayashi S, Tamura Y, Ikeda M, Akimoto T, Yoshino S, Hashimoto H: Inhibitory effect of mizoribine on matrix metalloproteinase-1 production in synovial fibroblasts and THP-1 macrophages. Mod Rheumatol 15;264-268, 2005 https://doi.org/10.1007/s10165-005-0406-x
  12. Feldmann M, Brennan FM, Maini RN: Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14;397-440, 1996 https://doi.org/10.1146/annurev.immunol.14.1.397
  13. Cush JJ, Lipsky PE: Phenotypic analysis of synovial tissue and peripheral blood lymphocytes isolated from patients with rheumatoid arthritis. Arthritis Rheum 31;1230-1238, 1988 https://doi.org/10.1002/art.1780311003
  14. Janossy G, Panayi G, Duke O, Bofill M, Poulter LW, Goldstein G: Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immunoregulation. Lancet 17;839-842, 1981 https://doi.org/10.1016/S0140-6736(02)98176-6
  15. Ishikawa H: Mizoribine and mycophenolate mofetil. Curr Med Chem 6;575-597, 1999
  16. Shunsei H, Tamiko Y: Inhibition of expression of cyclin A in human B cells by an immunosuppressant Mizoribine. J Immunol 155;5175-5183, 1995
  17. Stuehr DJ, Nathan CF: Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169;1543-1555, 1989 https://doi.org/10.1084/jem.169.5.1543
  18. Majumder N, Dey R, Mathur RK, Datta S, Maitra M, Ghosh S, Saha B, Majumdar S. An unusual pro-inflammatory role of interleukin-10 induced by arabinosylated lipoarabinomannan in murine peritoneal macrophages. Glycoconj J 23;675-86, 2006 https://doi.org/10.1007/s10719-006-9017-9
  19. Yukoh A, Takako M, Shu-Ichi I, Shigenori K, Tomoyuki M, Masaaki M, Masaaki I, Toshihiro M, Shumpei Y: Mizoribine as an effective combined maintenance therapy with prednisolone in child-onset systemic lupus erythematosus. Pediatr Int 44;199-204, 2002 https://doi.org/10.1046/j.1328-8067.2001.01534.x
  20. Rieko N, Kazunari K, Yoshiyuki O, Yuichiro Y: Mizoribine treatment for childhood IgA nephropathy. Pediatr Int 44; 217-223, 2002 https://doi.org/10.1046/j.1328-8067.2001.01532.x
  21. Yoshifusa A, Yuichiro T, Masataka H, Masayuki N, Katsushi M, Shuichiro W, Yasuhei O, Yoji I: Pharmacokinetic study of mizoribine in an adolescent with lupus nephritis. Pediatr Int 46;597-600, 2004 https://doi.org/10.1111/j.1442-200x.2004.01936.x
  22. Imaizumi Y, Saura R, Mizuno K, Nakagami K: The antiproliferative effect of mizoribine on rheumatoid synovial fibroblast mediated by induction of apoptosis. Kobe J Med Sci 47;13-23, 2001
  23. Lee DM, Weinblatt ME: Rheumatoid arthritis. Lancet 358; 903-911, 2001 https://doi.org/10.1016/S0140-6736(01)06075-5
  24. Seitz M, Loetscher P, Dewald B, Towbin H, Ceska M, Baggiolini M: Production of interleukin-1 receptor antagonist, inflammatory chemotactic proteins, and prostaglandin E by rheumatoid and osteoarthritic synoviocytes-regulation by IFN-gamma and IL-4. J Immunol 152;2060-2065, 1994
  25. Taylor DJ: Interleukin-4 (IL-4) induces down-modulation and shedding of the p55 tumor necrosis factor receptor and inhibits TNF alpha's effect on rheumatoid synovial fibroblasts. Rheumatol Int 14;21-25, 1994 https://doi.org/10.1007/BF00302667
  26. Borghaei RC, Rawlings PL Jr, Mochan E: Interleukin-4 suppression of interleukin-1-induced transcription of collagenase (MMP-1) and stromelysin 1 (MMP-3) in human synovial fibroblasts. Arthritis Rheum 41;1398-1406, 1998 https://doi.org/10.1002/1529-0131(199808)41:8<1398::AID-ART8>3.0.CO;2-B
  27. Dechanet J, Briolay J, Rissoan MC, Chomarat P, Galizzi JP, Banchereau J, Miossec P: IL-4 inhibits growth factorstimulated rheumatoid synoviocyte proliferation by blocking the early phases of the cell cycle. J Immunol 151;4908-4917,1993
  28. Suzuki E, Umezawa K: Inhibition of macrophage activation and phagocytosis by a novel NF-kappaB inhibitor, dihydroxymethylepoxyquinomicin. Biomed Pharmacother 60;578-586, 2006 https://doi.org/10.1016/j.biopha.2006.07.089