도시화 정도에 따른 포천천과 영평천의 돌 부착규조 군집 변화

Changes of Epilithic Diatom Communities according to Urbanization Influence in the Pocheon and Youngpyeong Streams

  • 김용재 (대진대학교 생명과학과)
  • 발행 : 2007.09.30

초록

도시화는 하천의 수리, 수질 및 수로의 형태를 변화시키고, 수생태계의 조성을 변화시키고 있다. 최근 포천천과 영평천 주변에 많은 인구와 소규모의 공장 등이 유입되어 도시화됨으로써 오, 폐수의 방류량이 증가하였다. 본 연구는 도시화의 정도에 따라 하천 생태계를 구성하고 있는 돌 부착규조 군집의 조성이 다른 것에 기초로 하여 돌 부착규조 군집의 조성, 우점종 및 생태군 별 종 조성과 생물지수(DAIpo)에 의한 수 환경을 평가하였다. 두 하천의 도시화 지수는 포천천의 정점 P-3와 P-5에서 각각 85와 91로 매우 높은 반면에 영평천 주변의 도시화지수는 약 20 이하였다. 본 조사에서 돌 부착규조는 총 141종류로써 2목, 8과, 30속, 128종, 12변종, 1미동정종으로 구성되었다. 출현 종수는 포천천에서$11{\sim}36$종류의 범위였고, 영평천에서 $14{\sim}45$종류의 범위였다. 우점종은 포천천에서 Navicular saprophila, N. subminuscula, Nitzschia palea, Gomphonema pseudoaugur 등이었으며, 영평천에서 Achnanthes alteragracillima, A. convergens, A. minutissima, N. minima, N. fonticola, N. frustulum와 Cymbella minuta var. silesiaca 등으로써 두 하천의 도시화 정도에 따라 뚜렷한 차이를 나타내었다. 도시화 지수와 EC, BOC, COD, TN, TP. 및 DAIpo 등은 높은 상관관계 $(r^2>0.8)$를 나타내었다. 도시화에 따라 유기오염의 정도가 매우 다르며, 이에 따라 돌 부착 규조의 생태군이 포천천에서는 호오탁성종의 종수 및 상대빈도가 매우 높은 반면 영평천에서는 호청수종의 종수 및 상대빈도가 높았다. 생물지수(DAIpo)에 의한 두 하천의 수질은 포천천에서 조사 동안 강부수성(P-3, 4, 5)을 나타내었고, 영평천에서는 빈부수성(Y-1)에서 강부수성(Y-4)까지 다양하게 나타났다.

The urbanization is altering the hydrology, water quality, channel form of waterway and changing the composition of biological communities in the aquatic ecosystem. Recently, towns grew bigger by the drift of large numbers of people and the medium and small leather and dyeing industries around the Pocheon and Youngpyeong streams. The discharges of sewage were increased by them. The UII (urban intensity index) was 85 (st. P-3) and 91 (st. P-6) in the Pocheon stream and about 20 in the Youngpyeong stream. A total 141 taxa of epilithic diatoms which were composed of 2 order, 8 family, 30 genera. Dominant species were Navicula saprophila, N. subminuscula, Nitzschia palea, Gomphonema pseudoaugur in the Pocheon stream and Achnanthes alteragracillima, A. convergens, A. minutissima, N. minima, N. fonticola, N. frustulum and Cymbella minuta var. silesiaca in the Youngpyeong stream. It Showed the different composition of dominant species by the urbanization near two streams. In the relationships between UII and environmental factors such as EC, BOD, COD, TN, TP and DAIpo, UII showed the high relations $(r^2>0.8)$. It was the difference of organic pollution according to urbanization. It therefore, was higher the relative abundance and more the numbers of saprophilous taxa in the Pocheon stream than the Youngpyeong stream. The water quality of two streams by biological indicators(DAIpo) was polysaprobic state(st. P-3, P-4, P-5) in the Pocheon stream and was oligosaprobic (Y-1), mesosaprobic (Y-2, 3) and polysaprobic state (Y-4) in the Youngpyeong stream during the investigation periods.

키워드

참고문헌

  1. 김용재. 1999. 부착규조 군집에 의한 포천천의 수질 평가, 육수지 32: 135-140
  2. 김용재. 2001. 신천의 부착규조 군집을 이용한 유기오탁 판정, 육수지 34: 199-205
  3. 대진대 환경연구소. 2005. 포천시 하천수계 수질 오염연구조사. 100p
  4. 대전대 환경연구소. 2006. 포천시 하천수계 수질 오염연구조사. 101p
  5. 이정호. 1992. 광천(경상북도 울진군)의 부착규조에 대한 분류 및 생태학적 연구, 경북대 박사학위 논문. 279p
  6. 장광현, 김현우, 최상호, 김중곤, 주기재. 1999. 도시하천(서울 양재천) 및 산지하천(경기도 사기막천)에서 부착 규조 군집의 동태, 육수지 32: 229-237
  7. 정준, 최재신, 이정호. 1993. 부착규조 군집의 유기오탁 지수 (DAIpo)에 의한 금호강의 수질 평가, 육수지 11: 43-58
  8. 최재신. 1993. 밀양강의 부착규조에 대한 분류 및 생태학적 연구. 경북대 박사학위 논문. 223p
  9. Aboal, M., M.A. Puig and G. Soler. 1996. Diatom assemblages in some Mediterranean temporary streams in south-eastern Spain. Arch Hydrobiol. 136: 509-527
  10. APHA. 1995. Standard method for the examination of water and wastewater. 19th ed. Port City Press, Baltimore, Maryland, USA
  11. Barbour, M.T., J. Gerritsen, B.D. Snyder and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Steam and Wadeable Rivers: Periphyton, Benthic Macroinver-tebrates and Fish, Second edition. EPA 841-B-99-002. US Environmental Protection Agency Office of Water, Washington, DC
  12. Belore, M.L., J.G. Winter and H.C. Duthie. 2002. Use of diatoms and macroinvertebrates as bioindicators of water quality in southern Ontario rivers. Can. Water Resour. J. 27: 457-484 https://doi.org/10.4296/cwrj2704457
  13. Biggs, B.J.F. 1995. The contribution of flood distuebance, catchment geology and land use to the habitate template of periphyton in stream ecosystems. Freshwater Biol. 33: 419-438 https://doi.org/10.1111/j.1365-2427.1995.tb00404.x
  14. Biggs, B.J.F. 1996. Patterns of benthic algae in streams. In: Stevenson, R.J., M.L. Bothwell and R.L. Lowe(eds.), Algal Ecology-Freshwater Benthic Ecosystem. Academic Press, California
  15. Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302-1310 https://doi.org/10.1126/science.199.4335.1302
  16. Dunne, T. and L.B. Leopold. 1978. Water in environmental planning. W.H. Freeman and Company, San Francisco
  17. Fabricius, A.L.M., N. Maidana, M.N. Gomez and S. Saba-ter. 2003. Distribution pattern of benthic diatoms in a Pampean river exposed to seasonal floods: the Cuarto River(Argentina). Biodivers. Conserv. 12: 2443-2454 https://doi.org/10.1023/A:1025857715437
  18. Fore, L.S. and C. Grafe. 2002. Using diatoms to assess the biological condition of large rivers in Idaho (USA). Freshwater Biol. 47: 2015-2037 https://doi.org/10.1046/j.1365-2427.2002.00948.x
  19. Fukshima, H., T. Ko-Bayashi and H. Ohtsuka. 1990. Plants from the Shimanto-gawa river, Attached Alae. Bull. Kochi Citizen Libr. 103-130
  20. Handey, H.I. 1974. Permanganate method for cleaning freshly gathered diatoms. Microscopy 32: 423-426
  21. Harding, J.S., R.G. Young, J.W. Hayes, K.A. Shearer and J.D. Stark. 1999. Changes in agricultural intensity and river health along a river continuum. Freshwater Biol. 42: 345-357 https://doi.org/10.1046/j.1365-2427.1999.444470.x
  22. Hill, B.H., A.T. Herlithy, P.R. Kaufmann, R.J. Stevenson, F.H. McCormick and C.B. Johnson. 2000. Use of periphyton assemblage data as an index of biotic integrity. J. of the North Amer. Benthol. Soc. 19: 50-67 https://doi.org/10.2307/1468281
  23. Hillebrand, H. and U. Sommer. 2000. Diversity of benthic microalgae in response to colonization time and eutro-phication. Aquat. Bot. 67: 221-236 https://doi.org/10.1016/S0304-3770(00)00088-7
  24. Izsak, C.A., R.G. Price, J.T. Hardy and P.W. Basson. 1995. Biodiversity of periphyton (diatoms) and echinoderms around a refinery effluent and possible associations with stability. Aquat. Ecosyst. Health Manage. 5: 61-70
  25. Kelly, M. 2000. Identification of common benthic diatoms in rivers. Field Stud. 9: 583-700
  26. Koster, D. and T. Hubener. 2001. Application of diatom Indices in a planted ditch constructed for tertiary sewage treatment in Schwaan, Germany. Int. Rev. gesamten Hydrobiol. 86: 241-252 https://doi.org/10.1002/1522-2632(200104)86:2<241::AID-IROH241>3.0.CO;2-H
  27. Kutka, F.J. and C. Richards. 1996. Relating diatom assemblage structure to stream habitat quality. J. of the North Amer. Benthol. Soc. 15: 469-480 https://doi.org/10.2307/1467799
  28. Lange-Bertalot, H. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwig. 64: 285-304
  29. Leland, H.V. and S.D. Porter. 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biol. 44: 279-301 https://doi.org/10.1046/j.1365-2427.2000.00536.x
  30. Lobo, E.A., K. Katoh and Y. Argua. 1995. Response of epili-thic diatom assemblages to water pollution in rivers in the Tokyo Metropolitan area, Japan. Freshwater Biol. 34: 191-204 https://doi.org/10.1111/j.1365-2427.1995.tb00435.x
  31. Ndiritu, G.G., N.N. Gichuki and L. Triest. 2006. Distribution of epilithic diatoms in response to environmental conditions in an urban tropical stream, Central Kenya. Biodiv. and Conser. 15: 3267-3293 https://doi.org/10.1007/s10531-005-0600-3
  32. Ndiritu, G.G., N.N. Gichuki, P. Kaur and L. Triest. 2003. Characterization of environmental gradients using physico-chemical measurements and diatom densities in Nairobi River, Kenya. Aquat. Ecosyst. Health Manage. 6: 343-354 https://doi.org/10.1080/14634980301484
  33. O'Farrell, I., A. Vinocur and I. Izaguirre. 1996. Phytoplank-ton ecology of the lower Parana River, Argentina. Arch. Hydrobiol. Suppl. 115: 75-89
  34. Ometo, J.P.H.B., L.A. Martinelli, M.V. Ballester, A. Gess-ner, A.V. Krrusche, R.L. Victoria and M. Williams. 2000. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba River basin, southeast Brazil. Freshwater Biol. 44: 327-337 https://doi.org/10.1046/j.1365-2427.2000.00557.x
  35. Paul, M.J. and J.L. Meyer. 2001. Streams in the urban landscape. Annual Rew. of Ecol. and System. 32: 333-365 https://doi.org/10.1146/annurev.ecolsys.32.081501.114040
  36. Raschke, R.L. 1993. Diatom (Bascillariophyta) community response to phosphorus in Everglades National Park, USA. J. Phycol. 32: 48-58 https://doi.org/10.2216/i0031-8884-32-1-48.1
  37. Rott, E. and P. Pfister. 2003. Diatom methods developed for river quality assessment in Austria and a crosscheck against numerical trophical indication methods used in Europe. Algol. Stud. 110: 91-115 https://doi.org/10.1127/1864-1318/2003/0110-0091
  38. Round, F.E. 1993. A review and methods for the use of epilithic diatoms for detecting and monitoring changes in river water quality 1993. Method for the Examination of Waters and Associated Materials. London, Her Majesty's Stationary Office. 65p
  39. Roy, A.H., A.D. Rosemond, M.J. Paul, D.S. Leigh and J.B. Wallace. 2003. Stream macroinvertebrate response to catchment urbanization (Georgia, USA). Freshwater Biol. 48: 329-346 https://doi.org/10.1046/j.1365-2427.2003.00979.x
  40. Schonfelder, I., J. Gelbrecht, J. Schonfelder and C.E.W. Steinberg. 2001. Relationship between littoral diatoms and their chemical environment in Northeastern German lakes and rivers. J. Phycol. 38: 66-82 https://doi.org/10.1046/j.1529-8817.2002.01056.x
  41. Shannon, C.E. and W. Weaver. 1963. The Mathematical theory of communication. Illinois Univ. Press, Urbana
  42. Simpson, E.H. 1949. Measurement of diversity. Nature 163: 1-688 https://doi.org/10.1038/163001a0
  43. Sonneman, J.A., C.J. Walsh, P.F. Breen and A.K. Sharpe. 2001. Effects of urbanization on stream of the Melbourne region, Victoria, Australia. II. Benthic diatom communities. Freshwater Biol. 46: 553-565 https://doi.org/10.1046/j.1365-2427.2001.00689.x
  44. Stepenuck, K.F., R.L. Crunkilton and L. Wang. 2002. Impacts of urban land use on macroinvertebrate communities in southeastern Wisconsin streams. J. of the Amer. Water Resour. Assoc. 38: 1041-1051 https://doi.org/10.1111/j.1752-1688.2002.tb05544.x
  45. Stevenson, R.J. 1984. Epilithic and epipelic diatoms in the Sandusky River, with emphasis on species diversity and water quality. Hydrobiol. 114: 161-175 https://doi.org/10.1007/BF00031868
  46. Stevenson, R.J. 1997. Scale-dependent causal framwork and the consequences of benthic algal heterogenity. J. of North Amer. Benthol. Soc. 16: 248-262 https://doi.org/10.2307/1468255
  47. Stevenson, R.J. and Y. Pan. 1999. Assessing environmental conditions in rivers and streams with diatoms. In: Stoe-mer, E. and J.P. Smol (eds.), The diatoms: application for the environmental and earth science. Cambridge Univ. Press. p. 11-41
  48. Stoemer, E. and J.P. Smol. 1999. The diatoms: application for the environmental and earth sciences. Cambridge Univ. Press
  49. Tate, C.M., J.F. Coles and H. Zappia. 2005. Use of an urban intensity index to assess urban effects on streams in three constrating environmental setting. Amer. Fish. Soc. Symp. 47: 291-315
  50. van Dam, H. 1982. On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwig. 73: 97-115
  51. van Dam, H., A. Mertens and J. Sinkeldam. 1994. A coded checklist and ecological values of freshwater diatoms from Netherlands. Neth. J. Aquat. Ecol. 28: 117-133 https://doi.org/10.1007/BF02334251
  52. Vannote, R.L., G.W. Minshall, K.W. Cummis, J.R. Sedell and C. Cushing. 1980. The river cintinuum concept 1. Can. J. Fish. Aquat. Sci. 37: 130-137 https://doi.org/10.1139/f80-017
  53. Walsh, C.J., A.K. Sharpe, P.F. Breen and J.A. Sonneman. 2001. Effects of urbanization on streams of the Melbourne region, Victoria, Austrailia. I. Benthic macroinvertebrate communities. Freshwater Biol. 46: 535-551 https://doi.org/10.1046/j.1365-2427.2001.00690.x
  54. Ward, J.V. 1998. Riverine landscapes: biodiversity patterns, disturbance regimes and aquatic conservation. Biol. Conserv. 83: 269-278 https://doi.org/10.1016/S0006-3207(97)00083-9
  55. Watanabe, T., K. Asai and A. Houki. 1990. Numerical simulation of organic pollution in flowing waters. Encyclopedia of Environmental control Technology, Vol. 4. Hazard Waste Containment and Treatment. Gulf Publ. Company, Huston, Texas. p. 251-281
  56. Whitton, B.A. and E. Rott (eds.). 1996. Proceedings of an international Symposium on Use of Algae for Monitoring Rivers. 17-19 Sept. 1995. Austrian Ministry of Sci. Traffic and Arts, Innsbruck, Austria
  57. Whitton, B.A. and M.G. Kelly. 1995. Use of algae and other plants for monitoring rivers. Aust. J. Ecol. 20: 45-56 https://doi.org/10.1111/j.1442-9993.1995.tb00521.x
  58. Winter, J.G. and H.C. Duthie. 2000. Export coefficient modeling to assess phosphorus loading in an urban watershed. J. of the Amer. Water Resour. Assoc. 36: 1053-1061 https://doi.org/10.1111/j.1752-1688.2000.tb05709.x