잡식성 및 플랑크톤 섭식어류의 간접노출 강도가 Microcystis aeruginosa의 microcystin 함량변화에 미치는 영향

Changes in Microcystin Production in Microcystis aeruginosa Exposed to Different Concentrations of Filtered Water from Phytoplanktivorous and Omnivorous Fish

  • 장민호 (부산대학교 환경기술산업개발연구소) ;
  • 정종문 (부산시 상수도사업본부 수질연구소) ;
  • 윤주덕 (부산대학교 생물학과) ;
  • 이유정 (부산시 상수도사업본부 수질연구소) ;
  • 하경 (부산대학교 환경기술산업개발연구소)
  • Jang, Min-Ho (Institute for Environmental Technology and Industry, Pusan National University) ;
  • Jung, Jong-Mun (Pusan Water Quality Institute, Waterworks HQ) ;
  • Yoon, Ju-Duk (Department of Biology, Pusan National University) ;
  • Lee, You-Jeong (Pusan Water Quality Institute, Waterworks HQ) ;
  • Ha, Kyong (Institute for Environmental Technology and Industry, Pusan National University)
  • 발행 : 2007.06.30

초록

잡식성 및 플랑크톤 섭식 어류(Carassius gibelio langsdorfi, Hypophthalmichthys molitrix)의 간접노출(CCMF, HCMF) 농도차(0, 10, 50%)에 따른, 남조 Microcystis aeruginosa의 생체량과 세포내부와 외부의 마이크로시스틴(microcystin, MC) 함량을 1일 간격으로 관찰하였다. 실험기간동안 M. aeruginosa균주의 세포내에 함유된 MC의 양은 대조군 보다 모든 처리군에서 증가한 것으로 나타났다(CCMF1, P=0.015; CCMF2, P<0.001; HCMF1, P< 0.001; HCMF2, P<0.001). 처리군간의 비교에서는 CCMF1의 세포내 MC함량 보다 CCMF2의 세포내 MC 함량이 통계적으로 유의한 수준으로 증가하였다(P=0.023). 또한 HCMF2의 세포내 MC함량이 HCMF1의 MC함유량보다 증가한 것으로 나타났다(P<0.001). M. aeruginosa균주의 세포외 MC함량은 대조군과 CCMF1과 CCMF2에서 차이를 보이지 않았고, HCMF1과 HCMF2의 세포외 MC함량이 대조군보다 높은 것으로 나타났다(HCMF1, P=0.003; HCMF2, P<0.001). 본 연구결과, 독성 Microcystis의 경우 어류의 분비화학물질(kairomone) 농도에 따라 세포 내, 외부의 독성이 증가될 가능성이 있으며, 부영양호에서 생물적 조절을 통한 조류저감을 실시할 경우 Microcystis의 독소 변화를 고려해야 할 것으로 보인다.

This study was to evaluate microcystin production by Microcystis aeruginosa in response to three different levels of indirect (0, 10, 50% of fish cultured media filtrate; control, FCMF1 and FCMF2) exposures to omnivorous and planktivorous fish (Carassius gibelio langsdorfi and Hypophthalmichthys molitrix, CCMF and HCMF, repectively). The cell biomass, intracellular microcystin (MC) and extracellular MC were measured everyday. The intracellular MC contents of all treatments were significantly increased than the controls (CCMF1, P=0.015; CCMF2, P<0.001; HCMF1, P<0.001; HCMF2, P<0.001). The intracellular MC contents of M. aeruginosa were significantly higher in CCMF2 than in CCMF1 (P=(0.023), Those of M, aeruginosa in HCMF2 were significantly higher than that in HCMF1 (P<0.001). The extracellular MC contents were not significantly different between control and CCMFs but those of M, aeruginosa in HCMF1 and HCMF2 were significantly higher than that in control (HCMF1, P=0.003; HCMF2, P<0.001). This study strongly supports that induced-defensive MC production (intra and extracellular MC) of potentially toxic cyanobacteria in response to kairomone concentration and this results can consider the biomanipulation of eutrophic waters as well as an information concerning strategies for recovering eutrophic waters.

키워드

참고문헌

  1. 김백호, 김보라, 한명수. 2005. 박테리아와 어류가 유해조류 Microcystis aeruginosa의 성장 및 형태변화에 미치는 영향. 육수지 38: 420-428
  2. 하 경, 장민호, 정종문, 주기재. 2003. 동물플랑크톤 배양여과액에 의한 Microcystis aeruginosa의 성장, 형태 및 microcystin 생성량의 변화. 육수지 36: 1-8
  3. Bagnaz, D., G. Staaks and C. Steinberg. 1998. Impact of the cyanobacteria toxin, microcystin-LR on behaviour of zebrafish, Dania reria. Water Res. 32: 948-952 https://doi.org/10.1016/S0043-1354(97)00207-8
  4. Brönmark, C. and L.-A. Hansson. 2000. Chemical communication in aquatic systems: an introduction. Oikos 88: 103-109 https://doi.org/10.1034/j.1600-0706.2000.880112.x
  5. Burks, R.L., E. Jeppesen and D.M. Lodge. 2000. Macrophyte and fish chemicals suppress Daphnia growth and life history traits. Oikos 88: 139-147 https://doi.org/10.1034/j.1600-0706.2000.880116.x
  6. Bury, N.R., F.B. Eddy and G.A. Codd. 1995. The effects of cyanobacterium Microcystis aeruginosa, the cyanobacterial hepatotoxin microcystin-LR, and ammonia on growth rate and ionic regulation of brown trout. J. Fish Biol. 46: 1042-1054
  7. Carbis, C.R., G.T. Rawlin, P. Grant, G.F. Mitchell, J.W. Anderson and I. McGauley. 1997. A study of the feral carp, Cyprrinus carpio L., exposed to Microcystis aeruginosa at Lake Mokoan, Australia and possible implications for fish health. J. Fish Dis. 20: 81-91 https://doi.org/10.1046/j.1365-2761.1997.d01-111.x
  8. Codd, G.A. 1995. Cyanobacterial toxins: occurrence, properties, and biological significance. Water Sci. Technol. 32: 146-159
  9. Datta, S. and B.B. Jana. 1998. Control of bloom in a tropical lake: grazing efficiency of some herbivorous fishes. J. Fish Biol. 53: 12-24 https://doi.org/10.1111/j.1095-8649.1998.tb00104.x
  10. De Bernardi, R. and G. Giussani. 1990. Are blue-green algae suitable food for zooplankton? A review. Hydrobiologia 200/201: 29-41 https://doi.org/10.1007/BF02530326
  11. DeMott, W.R., Q.X. Zhang and W.W. Carmichael. 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr. 36: 1346-1357 https://doi.org/10.4319/lo.1991.36.7.1346
  12. Dicke, M. and M.W. Sabelis. 1988. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct. Ecol. 2: 131-139 https://doi.org/10.2307/2389687
  13. Dittmann, E. and T. Borner. 2005. Genetic contributions to the risk assessment of MC in the environment. Toxicol. Appl. Pharm. 203: 192-2000 https://doi.org/10.1016/j.taap.2004.06.008
  14. Endler, J.A. 1986. Defense against predators.-In: Feder, M.E. and Lauder, G.V. (eds.), Predator-prey relationships: perspectives and approached from the study of lower vertebrates. Univ. of Chicago, Chicago, p. 109-134
  15. Fialkowska, E. and A. Pajdak-Stos. 1997. Inducible defence against a ciliate grazer, Pseudomicrothorax dubius, in two strains of Phormidium (cyanobacteria). Proc. R. Soc. Lond. B. 264: 937-941
  16. Fisher, W.J. and D.R. Dietrich. 2000. Pathological and biochemical characterization of Microcystin-induced hepatopancreas and kidney damage in Carp (Cyprinus carpio). Toxicol. Appl. Pharm. 164: 73-81 https://doi.org/10.1006/taap.1999.8861
  17. Fisher, W.J., B.C. Hitzfeld, F. Tencalla, J.E. Eriksson, A. Mikhailov and D.R. Dietrich. 2000. Microcystin-LR toxicodynamics, induced pathology, and immunohistochemical localization in livers of blue-green algae exposed rainbow trout (oncorhynchus myiss), Toxicol. Sci. 54: 365-373 https://doi.org/10.1093/toxsci/54.2.365
  18. Gliwicz, Z.M. and P. Maszczyk. 2007. Daphnia growth is hindered by chemical information on predation risk at high but not at low food levels. Oecologia 150: 706-715 https://doi.org/10.1007/s00442-006-0528-7
  19. Haney, J.F., D.J. Forsyth and M.R. James. 1994. Inhibition of zooplankton filtering rates by dissolved inhibitors produced by naturally occurring cyanobacteria. Arch. Hydrobiol. 132: 1-13
  20. Harada, K.I., K Matsuura, M. Suzuki, H. Oka, M.F. Watanabe, S. Ohshi, A.M. Dahlem, V.R. Beasley and W.W. Carmichael. 1988. Analysis and purification of toxic peptides from cyanobacteria by reversed-phase high performance liquid chromatography. J. Chromatogr, 448: 275-283 https://doi.org/10.1016/S0021-9673(01)84589-1
  21. Henrikson, B.I. and J.A.E. Stenson. 1993. Alarm substance in Gyrinus aeraus (Coleoptera, Gyrinidae), Oecologia 93: 191-194 https://doi.org/10.1007/BF00317670
  22. Jang, M.-H., K. Ha, G.-J. Joo and N. Takamura. 2003a. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biol. 48: 1540-1550 https://doi.org/10.1046/j.1365-2427.2003.01107.x
  23. Jang, M.-H., K. Ha and G.-J. Joo. 2003b. Toxin-mediated between cyanobacteria and native fish in the eutrophic Hoedong Reservoir, South Korea. J. Freshwater Ecol. 18: 639-646 https://doi.org/10.1080/02705060.2003.9664006
  24. Jang, M.-H., K. Ha, M.C. Lucas, G.-J. Joo and N. Takamura. 2004. Changes in MC production by Microcystis aeruginosa exposed to phytoplanktovorous and omnivorous fish. Aquat. Toxicol. 68: 51-59 https://doi.org/10.1016/j.aquatox.2004.02.002
  25. Jang, M.-H., K. Ha, J.-M. Jung, Y.-J. Lee and N. Takamura. 2006. Increased microcystin production of Microcystis aeruginosa by indirect exposure of nontoxic cyanobacteria: Potential role in the development of Microcystis bloom. Bull. Environ. Contam. Toxicol. 76: 957-962 https://doi.org/10.1007/s00128-006-1011-1
  26. Jang, M.-H., K. Ha and N. Takamura. 2007a. Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica). Toxicon 49: 727-733 https://doi.org/10.1016/j.toxicon.2006.11.017
  27. Jang, M.-H., J.-M. Jung and N. Takamura. 2007b. Changes in microcystin production in cyanobacteria exposed to zooplankton at different population densities and infochemical concentrations. Limnol. Oceanogr. 52(4): 1454 -1466 https://doi.org/10.4319/lo.2007.52.4.1454
  28. Kamjunke, N., K. Schmidt, S. Pflugmacher and T. Mehner. 2002. Consumption of cyanobacteria by roach (Rutilus rutilus): useful or harmful to the fish? Freshwater Bioi. 47: 243-250 https://doi.org/10.1046/j.1365-2427.2002.00800.x
  29. Kasai, F., M. Kawachi, M. Erata and M.M. Watanabe. 2004. NIES Collection List of Strains: Microalgae and Protozoa. 7th ed. NIES Environment Agency, Tsukuba, Japan
  30. Kats, L.B. and L.M. Dill. 1998. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 4: 361-394
  31. Lampert, W. 1987. Laboratory studies on zooplankton-cyanobacteria interactions. New. Zeal. J. Mar. Fresh. 21: 483-490 https://doi.org/10.1080/00288330.1987.9516244
  32. Lampert, W., K.O. Rothhaupt and E. von Elert. 1994. Chemical induction of colony formation in a green alga (Scenedesmus acutus) by grazers (Daphnia). Limnol. Oceanogr. 39: 1543-1550 https://doi.org/10.4319/lo.1994.39.7.1543
  33. Larrson, P. and S. Dodson. 1993. Chemical communication in planktonic animals. Arch. Hydrobiol. 129: 129-155
  34. Loose, C.J., E. Von Elert and P. Dawidowicz. 1993. Chemically-induced diel vertical migration in Daphnia: a new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126: 329-337
  35. Lu, K., C. Jin, S. Dong, B. Gu and S.H. Bowen. 2006. Feeding and control of blue-green algal blooms by tilapia (Oreochromis niloticus). Hydrobiologia 568: 111-120
  36. Lurling, M. and E. van Donk. 1997. Morphological changes in Scenedesmus induced by infochemicals released in situ from zooplankton grazers. Limnol. Oceanogr. 42: 783-788 https://doi.org/10.4319/lo.1997.42.4.0783
  37. Oh, H.-M., S.J. Lee, M.-H. Jang and B.-D. Yoon. 2000. MC production by Microcystis aeruginosa in a phosphoruslimited chemostat. Appl. Environ. Microb. 66: 176-179 https://doi.org/10.1128/AEM.66.1.176-179.2000
  38. Parejko, K. and S. Dodson. 1990. Progress towards characterization of a predator/prey kairomone: Daphnia pulex and Chaoborus americanus. Hydrobiologia 198: 51-59 https://doi.org/10.1007/BF00048622
  39. Proulx, M., F.R. Pick, A. Mazumder, P.B. Hamilton and D.R.S. Lean. 1996. Effects of nutrients and planktivorous fish on the phytoplankton of shallow and deep aquatic systems. Ecology 77: 1556-1572 https://doi.org/10.2307/2265551
  40. Rapala, J., K. Sivonen, L. Christina and S.I. Niemelä. 1997. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. As a function of growth stimuli. Appl. Environ. Microbiol. 63: 2206-2212
  41. Smith, R.J.F. 1997. Avoiding and deterring predators. -In: Godin, J.-G.J. (ed.) Behavioural ecology of teleost fishes. Oxford Univ. Press. Oxford, p. 163-190
  42. Starling, F. 1993. Control of eutrophication by silver carp (Hypophthalmichthys molitrix Valenciennes) in the tropical Pranoa Reservoir (Brasila, Brazil): a mesocosm experiment. Hydrobiologia 257-258: 143-152
  43. Verity, P.G. and V. Smetacek. 1996. Organism life-cycles, predation, and the structure of marine pelagic ecosystems. Mar. Ecol. Prog. Ser. 130: 277-293 https://doi.org/10.3354/meps130277
  44. Wiackowski, K. and A. Starοnska. 1999. The effect of predator and prey density on the induced defence of a ciliate. Funct. Ecol. 13: 59-65 https://doi.org/10.1046/j.1365-2435.1999.00282.x
  45. Wiegand, C., S. Pflugmacher, A. Oberemm, N. Meems, K.A. Beattie, C.E.W. Steinberg and G.A. Codd. 1999. Uptake and effects of microcystin-LR on detoxification enzymes of early life stages of the zebrafish (Danio rerio). Environ. Toxicol. 14: 89-95 https://doi.org/10.1002/(SICI)1522-7278(199902)14:1<89::AID-TOX12>3.0.CO;2-7
  46. Wiegand, C. and S. Pflugmacher. 2005. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharm. 203: 201-218 https://doi.org/10.1016/j.taap.2004.11.002
  47. Williams, D.E., M. Craig, S.C. Dawe, M.L. Kent, R.J. Andersen and C.F.B. Holmes. 1997. ${14}C$ labeled microcystin-LR administered to atlantic salmon via intraperitoneal injection provides in vivo evidence for covalent binding of microcystin- LR in salmon livers. Toxicon 35: 985-989 https://doi.org/10.1016/S0041-0101(96)00196-1
  48. Xie, L., P. Xie, K. Ozawa, T. Honma, A. Yokoyama and H.D. Park. 2004. Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a sub-chronic toxicity experiment. Environ. Pollut. 127: 431-439 https://doi.org/10.1016/j.envpol.2003.08.011
  49. Zimba, P.V., L. Khoo, P.S. Gaunt, S. Brittain and W.W. Carmichael. 2001. Confirmation of catfish, Ictalurus punctatus (Rafinesque), mortality from Microcystis toxins. J. Fish Dis. 24: 41-47 https://doi.org/10.1046/j.1365-2761.2001.00273.x