The Differences of Zooplankton Dynamics in River Ecosystems with and without Estuary Dam in River Mouth

하구언 댐 유무에 따른 강 생태계에서의 동물플랑크톤 동태의 차이

  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • Lee, Hak-Young (Department of Biological Sciences, Chonnam National University)
  • Published : 2007.06.30

Abstract

The spatial and temporal zooplankton dynamics were examined along ca. 100-km section of the middle to lower Seomjin River (without estuary dam in river mouth) and Youngsan River (with estuary dam in river mouth) systems during study periods (2004. Nov.${\sim}$2006. Aug.) based on a monthly sampling intervals. The spatial variation of zooplankton biomass at both river ecosystems was distinct. There was considerable longitudinal variation in total zooplankton abundance in Youngsan R. stretch. The increase in total zooplankton abundance were observed along the longitudinal stretch toward the estuary dam. In contrast, there were not statistically significant longitudinal differences in total zooplankton abundance in Seomjin R. stretch. In Youngsan R. stretch, average abundance of total zooplankton (average ranges: $199{\sim}817$ Ind. $L^{-1}$ at 3 sampling sites, n=20) were nearly $4{\sim}60$ fold higher than that of Seomjin R. stretch (average ranges: $12{\sim}43$ Ind. $L^{-1}$ at 4 sampling sites, n=20). Relative abundance of rotifers (over 80% of total zooplankton abundance) at the whole sampling sites in Youngsan R. stretch were Much higher than that of the Seomjin R. stretch. The most abundant rotifers were Polyarthra spp., Brachionus spp., Colurella spp., and Keratella spp. at the both river ecosystems. In Seomjin R. stretch, copepods carbon biomass sharply increased toward in river mouth (over 40% of total zooplankton carbon biomass). Average ranges of total zooplankton filtering rates for phytoplankton at both river ecosystems varied from 21.2 to 92.9 mL $L^{-1}\;D^{-1}$ in Youngsan R. stretch and from 2.1 to 2.6 mL $L^{-1}\;D^{-1}$ in Seomjin R. stretch. Considering the zooplankton filtering rates, zooplankton as grazers of phytoplankton in Youngsan R. stretch seemed to play the more important role in planktonic food web than that of the Seomjin R. stretch.

동물플랑크톤의 공간적 시간적 동태 변화에 대해서 섬진강 중하 류(하구언 댐 무)및 영산강 중 하류(하구언 댐 유)약 100 km구획 내에서 2004년 11월부터 2006년 8월까지 월 간격으로 조사하였다. 두 수계 내 동물플랑크톤 생체량의 공간적 변이는 뚜렷하였다. 영산강 조사 구획 내 총 동물플랑크톤 밀도의 종적 변이는 뚜렷하였다. 강 하류 지역의 하구언 댐으로 향할수록 총 동물플랑크톤 밀도가 증가하였다. 이에 반해 섬진강의 조사 구획 내 총 동물플랑크톤 밀도 변이는 통계적으로 유의하지 않았다. 영산강 구획 내 평균 총 동물플랑크톤 밀도는(평균범위: $199{\sim}817$ 개체수 $L^{-1}$), 3 조사지점, n=20) 섬진강 구획 내 평균 총 동물플랑크톤 밀도(평균범위: $4{\sim}60$개체수 $L^{-1}$, 4 조사지점, n=20)보다 약 $4{\sim}60$ 배 정도 높았다. 영산강 수계(총 동물플랑크톤 밀도의 86% 이상)에서 윤충류의 상대 풍부도는 섬진강 수계에 비해 현저히 높았다. 두 수역에서 우점 한 종은 Polyarthra spp., Brachionus spp., Colurella spp., 및 Keratella spp. 였다. 섬진강 구획 내에서의 요각류의 탄소 생체량은 강 하류로 향할수록 증가하였다(총 동물플랑크톤 탄소 생체량의 40% 이상). 식물플랑크톤에 대한 총 동물플랑크톤 섭식률의 평균 범위는 영산강 구획 내에서는 $21.2{\sim}92.6mL\;L^{-1}\;D^{-1}$이며, 섬진강 구획 내에서는 $2.1{\sim}2.6mL\;L^{-1}\;D^{-1}$의 변동 범위를 보였다. 동물플랑크톤의 섭식률을 고려 해 볼 때, 영산강 구획 내에서 동물플랑크톤에 의한 플랑크톤 먹이환내에서의 역할의 중요성이 섬진강 구획 내에서 보다 상대적으로 높을 것으로 사료된다.

Keywords

References

  1. 강선아, 안광국. 2006. 영산강 수계의 이화학적 수질에 관한 시공간적 변이 분석, 육수지 39: 73-84
  2. 김광수, 이종빈, 이관식, 유형빈. 2000. 섬진강 하류계에서의 염분도에 따른 윤층류 군집의 변화, 육수지 33: 162-175
  3. 김용재. 2003. 영산강의 식물플랑크톤 군집 동태, 한국조류학회지 18: 207-215
  4. 박미옥, 문창호, 김석윤, 양성렬, 권기영, 이용우. 2001. 2000년 추계 섬진강 하구에서 염분경사에 따른 식물플랑크톤의 종조성: HPLC와 현미경 자료 비교, 한국조류학회지 16: 179-188
  5. 오강호, 고영구. 2003. 광주광역시 하천수의 수질 및 오염, 한국환경과학회지 12: 287-297
  6. 임병선, 이점숙, 서계홍, 김하송. 1996. 영산강 유역으로부터 유입되는 오염부하량에 따른 수생식물의 분포, 질산환원효소 활성 및 그 정화능, 한국생태학회지 19: 487-496
  7. 조기안, 안병진, 홍순강, 정동욱. 1999. 영산강하류의 계절 변화에 따른 수질특성과 유기인산염의 분해율에 관한 연구 1-부영양화를 중심으로, 한국환경과학회지 8: 691-698
  8. 황순진, 김난영, 원두희, 안광국, 이재관, 김창수. 2006. 돌말 (Epilithic Diatom)지수를 이용한 국내 주요 하천 (금강, 영산강, 섬진강)의 생물학적 수질평가, 한국물환경학회지 22: 784-795
  9. Anderssen, T. and D.O. Hessen. 1991. Carbon, nitrogen and phosphorous content of freshwater zooplankton. Limnol. Oceanogr. 36: 807-814 https://doi.org/10.4319/lo.1991.36.4.0807
  10. Bottrell, H.H., A Duncan, Z.M. Gliwicz, E. Grygierek, A. Herzig, A Hillbricht-Illkowska, H. Kurasawa, P. Larsson and T. Weglenka. 1976. A review of some problems in zooplankton production studies. Norwegian. J. Zool. 24: 419-456
  11. Cohen, R.R.H., P.V. Dresler, E.J..P. Phillips and R.L. Cory. 1984. The effect of the Asiatic clam, Corbicula fluminea, on the phytoplankton of the Potamic River, Maryland. Limnol. Oceanor. 29: 170-180 https://doi.org/10.4319/lo.1984.29.1.0170
  12. Conley, W.J. and J.J. Turner. 1991. Phytoplankton and zooplankton of the Westport River estuary, Massachusetts (USA). Hydrobiologia 210: 225-232 https://doi.org/10.1007/BF00034681
  13. Crisp, T.D. 1995. The ecological basis for the management of flow regulated by reservoir in the United Kingdom. In Harper, D.M. and J.D. Ferguson (eds.), The Ecological Basis for River Management. Wiley and Sons. Chichester: p. 93-103
  14. Dumont, H.J., I. Van De Velde and S. Dumont. 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotiferra from the plankton, periphyton and bethods of continetal waters. Oecologia 19: 75-97 https://doi.org/10.1007/BF00377592
  15. Einsle, U. 1993. Crustacea, Copepoda, Calanoida und Cyclopoida. Susswasswefauna von Mitteleuropa, vol. 8, part 4-1. Gustav Fisher Verlag, Stuttugart
  16. Ejsmont-Karabin, J. 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch Hydrobiol. 45: 513-522
  17. Grange, N., A.K. Whitfied, C.J. De Villiers and B.R. Allanson. 2000. The response of two South African east coast estuaries to altered river flow regimes. Aquatic Conserv: Mar. Freshwat. Ecosyst. 10: 155-177 https://doi.org/10.1002/1099-0755(200005/06)10:3<155::AID-AQC406>3.0.CO;2-Z
  18. Ha, K, H.W. Kim and G.J. Joo. 1998. The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia 369/370: 217-227 https://doi.org/10.1023/A:1017067809089
  19. Holst, H., H. Zimmermann-Timm and H. Kausch. 2002. Longitudinal and transverse distribution of plankton rotifers in the Potamal of ther River Elbe (Germany) during late summer. Int. Revue ges. Hydrobiol. 87: 267-280 https://doi.org/10.1002/1522-2632(200205)87:2/3<267::AID-IROH267>3.0.CO;2-F
  20. Hwang, S.J., H.-S. Kim, J.-K Shin, J.-M. Oh and D.-S. Kong. 2004. Grazing effects of a freshwater bivalve (Corbicula leana Prime) and large zooplankton on phytoplankton communities in two Korean lakes. Hydrobiologia 515: 161-179 https://doi.org/10.1023/B:HYDR.0000027327.06471.1e
  21. Iestwaart, Th., L. Breebart, B. Van Zanten and R. Bijkerk. 1999. Plankton dynamics in the river Rhine during downstream transport as influenced by biotic interactions and hydrological conditions. Hydrobiologia 410: 1-10 https://doi.org/10.1023/A:1003801110365
  22. Joo, G.J., H.W. Kim, K. Ha and J.K. Kim. 1997. Long-term trend of the eutrophication of the lower Nakdong River. Korean J. Limnol. 30: 472-480
  23. Kim, H.W. 1999. Water quality, plankton community dynamis and trophic regulation in the microbial food web by zooplankton in a hypertrophic river (Nakdong River, Korea). Ph. D. dissertation, Pusan National University, Busan
  24. Kim, H.W. 2006. The grazing rates and community dynamics of zooplankton in the continuous river stretch ecosystem including brackish zone. Korean J. Limnol. 39: 462-470
  25. Kim, H.W. and G.J. Joo. 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia 438: 171-184 https://doi.org/10.1023/A:1004185216043
  26. Kim, H.W., K.H. Chang, K.S. Jeong and G.J. Joo. 2003. The spring metazooplankton dynamics in the river-reservoir hybrid system (Nakdong River, Korea): Its role in controlling the phytoplankton biomass. Korean J. Limnol. 36: 420-426
  27. Kim, H.W., S.-J. Hwang and G.J. Joo. 2000. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22: 1559-1577 https://doi.org/10.1093/plankt/22.8.1559
  28. Kim, H.W., S.-J. Hwang, K.H. Chang, M.H. Jang, G.J. Joo and N. Walz. 2002. Longitudinal difference in zooplankton grazing on phyto- and bacterioplankton in the Nakdong River (Korea). Internat. Rev. Hydrobiol. 87: 281-293 https://doi.org/10.1002/1522-2632(200205)87:2/3<281::AID-IROH281>3.0.CO;2-V
  29. Kim, H.W., G.J. Joo and N. Walz. 2000. Difference of zooplankton development along a lake and river stretch of the River Spree (Germany). Korean J. Limnol. 33: 197-205
  30. Kobayashi, T., P. Gibbs, P.I. Dixon and R.J. Shiel. 1996. Grazing by a river zooplankton community: Importance of microzooplankton. Mar. Freshwat. Res. 47: 1025-1036 https://doi.org/10.1071/MF9961025
  31. Koste, W. 1978. Rotatoria. Die Radertiere Mitteleuropes begrunder von Max Voigt, 2nd edn., Vol. 1. Textband, 673pp., Vol. 2. Tafelband, 234pp. Borntraeger, Stuttgart
  32. Lair, N. 2006. A review of regulation mechanism of metazoan plankton in riverine ecosysetms: aguatic habitat versus biota. River Res. Applic. 22: 567-593 https://doi.org/10.1002/rra.923
  33. Marneffe, Y., J.-P. Descy and J.-P. Thome. 1996. The zooplankton of the lower river Meuse, Belgium: seasonal changes and impact of industrial and municipal discharges. Hydrobiologia 319: 1-13 https://doi.org/10.1007/BF00020966
  34. Modenutti, B.E. 1998. Planktonic rotifers of Samborombon River Basin (Argentina). Hydrobiologia 387: 259-265 https://doi.org/10.1023/A:1017045317756
  35. Pace, M.L. and J.D. Orcutt. 1981. Relative importance of protozoans, rotifers and crustaceans in a freshwater zooplankton community. Limnol. Oceanor. 26: 822-830 https://doi.org/10.4319/lo.1981.26.5.0822
  36. Pace, M.L., S.E.G. Findlay and D. Lints. 1992. Zooplankton in advective environments: The Hudson River community and a comparative analysis. Can. J. Fish. Aquat. Sci. 49: 1060-1069 https://doi.org/10.1139/f92-117
  37. Reynolds, C.S. 2000. Hydroecology of river plankton: the role of variability in channel flow. Hydrol. Process. 14: 3119-3132 https://doi.org/10.1002/1099-1085(200011/12)14:16/17<3119::AID-HYP137>3.0.CO;2-6
  38. Ruttner-Kolisko, A. 1977. Suggestions for biomass calculation of plankton rotifers. Arch. Hydrobiol. 8: 71-76
  39. Servais, P., V. Gosselain, C. Joaquimjusto, S. Becquevort, J.P. Thome and J.P. Descy. 2000. Trophic relationships between planktonic microorganism in the Meuse (Belgium): a carbon budget. Arch. Hydrobiol. 149: 625-653 https://doi.org/10.1127/archiv-hydrobiol/149/2000/625
  40. Smirnov, N.N. and B.V. Timms. 1983. A revision of the Australian Cladocera (Crustacean). Rec. Aust. Mus. Suppl. 1: 1-132 https://doi.org/10.3853/j.0812-7387.1.1983.103
  41. Tafe, D.J. 1990. Zooplankton and salinity in the Rufiji River delta, Tanzania. Hydrobiologia 208: 123-130 https://doi.org/10.1007/BF00008451
  42. Walz, N. 1995. Rotifer populations in plankton communities: Energetics and life history strategies. Experientia 51: 437-453 https://doi.org/10.1007/BF02143197
  43. Walz, N. and M. Welker. 1999. Plankton development along a 'River-Lake' gradient: conclusions for sustainable management of lowland river systems. Acta Hydrobiol. Sinica. 23(Suppl.): 77-86
  44. Welker, M. and N. Walz. 1998. Can mussels control the plankton in rivers?-a planktological approach applying a Lagrangian sampling strategy. Limnol. Oceanor. 43: 753-762 https://doi.org/10.4319/lo.1998.43.5.0753
  45. Wetzel, R.G. and G.E. Likens. 1991. Limnological Analyses. 2nd edn. Springer-Verlag, New York. 391pp