A Development of Multi-metric Approach for Ecological Health Assessments in Lentic Ecosystems

정수 생태계 건강성 평가를 위한 다변수 메트릭 모델 개발

  • An, Kwang-Guk (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Han, Jung-Ho (School of Bioscience and Biotechnology, Chungnam National University)
  • Published : 2007.03.30

Abstract

The purpose of this study was to develop a multi-metric Lentic Ecosystem Health Assessment (LEHA) model and apply model to dataset sampled from Daechung Reservoir in September 2005. The metrics were composed of 11 parameters such as physical, chemical and biological variables. The metric attributes of $M_1{\sim}M_8$ followed after the model of biological integrity using fish assemblages that previously adapted in lotic ecosystems, while the metrics of $M_9{\sim}M_{11}$ were added on the basis of literature. The metric of $M_9$ reflected habitat conditions in the littoral zone and the metric of $M_{10}$ reflected chemical conditions of the reservoir. For the application of regression analysis of long-transformed conductivity [$Log_{10}$(Cond)] against $COD_{Mn}$, based on 150 sampling sites at Korean reservoirs, showed that the variation of conductivity was explained 77.4% [$COD_{Mn}=4.42{\times}Log_{10}(Cond)-5.43;\;R^2=0.774$, p<0.01, n=150] by the variation of $COD_{Mn}$. The metric of $M_{11}$ was based on Tropic State Index (TSI), based on chlorophyll-${\alpha}$ concentrations (Chl-${\alpha}$). Analysis of TSI $(Chl-{\alpha})$ showed that above 50 was estimated "1", $40{\sim}50$ was estimated "3" and below 40% was estimated '5'. Overall, velues of LEHA in the reservoir averaged 30.5, indicating a "fair${\sim}$poor condition", which is judged by the criteria of U.S. EPA (1993). More studies such as metric numbers and attributes should be done for the application of the model.

본 연구에서는 정수 생태계의 건강성 평가를 위하여 물리적, 화학적, 생물학적 다변수 메트릭 평가모델을 개발하고, 개발된 모델을 이용하여 2005년 9월에 대청호의 생태 건강성을 평가를 실시하였다. 메트릭의 특성을 위하여 사용된 변수로는 생물학적 변수, 물리적 변수, 화학적 변수를 적용하였다. $M_1{\sim}M_8$의 메트릭은 어류를 이용한 생물지수 모델을 적용하였고, $M_9{\sim}M_{11}$의 메트릭은 문헌에 의거하여 수정보완 하였다(U.S. EPA, 1998). $M_9$의 메트릭은 호소 연안대의 서식지 특성을 반영하였고, $M_{10}$의 메트릭은 호소의 화학적인 수질상태를 반영하였다. 즉, $M_{10}$의 결과에 따른 회귀식은 $COD_{Mn}=4.42{\times}Log_{10}(Cond)-5.43(R^2=0.774$, <0.01, n=150) 로서 전국의 150개 호소에서의 전기전도도 값은 $COD_{Mn}$의 변이를 77.4%설명하고 있다. $M_{11}$의 메트릭은 호소의 엽록소-${\alpha}$에 의거한 부영양화도 지수(Tropic State Indek, TSI)를 이용하였다. 호소의 TSI(Chl-${\alpha}$)값에 따라 50 이상은 "1", $40{\sim}50$은 "3", 40이하는 "5"로 산정하였다. 상기 11개 다변수 모델을 이용한 대청호 생태계 건강성 평가 결과에 따르면, 대청호의 4개 지점 생태건강성 평균값은 "30"으로서 미국환경부(U.S. BPA, 1993)의 등급에 의거하여 "보통상태${\sim}$악화상태" $(Fair{\sim}poor)$로 나타났다.

Keywords

References

  1. 교육부. 1997. 한국동식물도감. 제37권 동물편(담수어류). p. 629
  2. 김만영, 최웅수, 김재용, 김광렬. 1993.세제 및 생활하수 관련 오염성분이 수질오염에 미치는 영향, 공업화학 4(3): 564-568
  3. 김익수. 1997. 한국동식물도감 동물편(담수어류). 교육부
  4. 김익수, 강종언. 1993. 원색한국어류도감. 아카데미서적
  5. 김익수, 박종영. 2002. 원색도감 한국의 민물고기. 교학사
  6. 안광구, 염동혁, 홍영표, 이성규. 2000. 어류군집을 이용한 금호강의 생물보전지수(Index of Biological Integrity) 평가, 환경생물 18(2): 215-226
  7. 안광국, 염동혁, 이성규. 2001a. 생물보전지수(Index of Biological Integrity)의 신속한 생물평가 기법을 이용한 갑천수계의 평가, 환경생물 19: 261-269
  8. 안광국, 정승현, 최신석. 2001b. 생물보전지수 및 서식지 평가지수를 이용한 평창강의 수환경평가, 육수지 34: 153-165
  9. 최기철. 1987. 충남의 자연 담수어편. 한국 과학기술 진흥재단
  10. 최기철. 1989. 한국의 민물고기. 서문당
  11. 최기철. 1994. 우리가 정말 알아야 할 우리 민물고기 백 가지. 현암사
  12. 최영길, 한명수, 안태영, 곽노태, 홍사욱, 한상욱, 이길철, 정규혁. 1989. 합성세제 중의 인성분이 수질오염에 미치는 영향, 육수지 p. 47-55
  13. 환경부. 2005. 물 환경 종합평가방법 개발 조사연구. p. 350
  14. An, K-G. 2001. Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem. Korean J. Limnol. 34(1): 18
  15. Cairns, J. Jr. and RL. Kaesler. 1971. Cluster analysis of fish in a portion of the Upper Potomac River. Transactions of the American Fisheries Society 100: 750-756 https://doi.org/10.1577/1548-8659(1971)100<750:CAOFIA>2.0.CO;2
  16. Carlson, R.E. 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361-369 https://doi.org/10.4319/lo.1977.22.2.0361
  17. Carlson, R.E. 1992. Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs. p. 59-71. In Enhancing the state's Lake Management Society, Madison, WI
  18. Crowder, A. and Painter. 1991. Submerged macrophytes in Lake Ontario: Current knowledge, importance, threats to stability, and needed studies. Canadian Journal of Fisheries and Aquatic Sciences 48: 1539-1545 https://doi.org/10.1139/f91-182
  19. Funk, J.L. 1957. Movement of stream fishes in Missouri. Transactions of the American Fisheries Society 85: 39-57 https://doi.org/10.1577/1548-8659(1955)85[39:MOSFIM]2.0.CO;2
  20. Gerking, S.D. 1959. The restricted movement of fish populations. Biological Review 34: 221-242 https://doi.org/10.1111/j.1469-185X.1959.tb01289.x
  21. Harper, D.M. and W.D.P. Stewart. 1987. The effects df land use upon water chemistry, particularly nutrient enrichment, in shallow lowland lakes: comparative studies of three lochs in Scotland. Hydrobiologia 148: 211-229 https://doi.org/10.1007/BF00017525
  22. Harper, D.M. 1992. Eutrophication of Freshwaters. Chapman and Hall, p. 120-123
  23. Hill, J. and G.D. Grossman. 1987. Home range estimates for three North American stream fishes. Copeia 1987: 376-380 https://doi.org/10.2307/1445773
  24. Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fishieries 6: 21-27 https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  25. Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant and I.J. Schlosser. 1986. Assessing biological integrity in running water: A method and its rationale. p. 28, Illinois national History Survey, Special Publication 5, Champaign, IL
  26. Nelson, J.S. 1994. Fishes of the world (3th ed.), John Wiley & Sons, New York
  27. Matthews, W.J. 1986. Fish faunal structure in an Ozark stream: Stability, persistence, and a catastrophic flood. Copeia 1986: 388-397 https://doi.org/10.2307/1444997
  28. Ohio EPA. 1989. Biological criteria for the protection of aquatic life. Vol. III, Standardized biological field sampling and laboratory method for assessing fish and macroinvertebrate communities. USA
  29. Ross, S.T., W.J. Matthews and A.E. Echelle. 1985. Persistence of stream fish assemblages: Effects of environmental change. American Naturalist 126: 24-40 https://doi.org/10.1086/284393
  30. Sanders, R.E., R.J. Miltner, C.O. Yoder and E.T. Rankin. 1999. The use of external deformities, erosion, lesions, and tumors (DELT anormalies) in fish assemblages for characterizing aquatic resources: A case study of seven Ohio streams. In Assessing the sustainability and biological integrity of water resoueces using fish communities (TP Simon ed). CRC Press LLC
  31. Sartory, D.P. and J.U. Grobbelaar. 1984. Extraction of chlorophyll-a form freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177-187 https://doi.org/10.1007/BF00031869
  32. SPSS. 2004. SPSS 12.0 KO for windows. Apache software foundation
  33. U.S. EPA. 1991. Technical support document for water quality-based toxic control. EPA 505-2-90-001. U.S. EPA, Office of Water, Washington, D.C., USA
  34. U.S. EPA. 1993. Fish field and laboratory methods for evaluating the biological integrity of surface waters. EPA 600-R-92-111. Environmental Monitoring systems Laboratory-cincinnati office of Modeling, Monitoring systems, and quality assurance Office of Research Development, U.S. EPA, Cincinnati, Ohio 45268, USA
  35. U.S. EPA. 1994. Environmental Monitoring and Assessment Program: Integrated quality assurance project plan for the Surface Waters Resource Group, 1994 activities, Rev. 2.00. EPA 600/X-91/080.U.S. Environmental Protection Agency, Las Vegas, NV
  36. U.S. EPA. 1998. Lake and Reservior Bioassessment and Biocriteria. EPA 841-B-98-007. U.S. EPA, Office of Water, Washington, D.C., USA
  37. U.S. EPA. 2002. Summary of biological assessment pro- grams and biocriteria development for states, tribes, territories, and interstate commissions: streams and wadable rivers. EPA-822-R-02-048. U.S. EPA, USA