Isolation and Characterization of A Thiodiglycol-Degrading Cupravidus sp.

Thiodiglycol를 분해하는 Cupriavidus sp.의 분리와 특성

  • 박종덕 (우송대학교 식품영양식품과학부) ;
  • 김지천 (국방과학연구소 제 5 기술개발본부) ;
  • 윤기홍 (우송대학교 식품영양식품과학부)
  • Published : 2007.12.30

Abstract

A Gram-negative bacterium capable of degrading thiodiglycol (TDG), main hydrolysis product of sulfur mustard, was isolated from ginseng field in enrichment medium supplemented with TDG as carbon source. The isolate, WS-32, grew optimally at $30-37^{\circ}C$ and pH 6.0-8.0. It was found to be similar to the genus Cupriavi연 on the basis of 165 rRNA sequence, while its biochemical properties were highly homologous to Alcaligenes faecalis. The cell growth of WS-32 strain was slightly inhibited on LB broth by TDG, but the maximum level of its growth was maintained stably in the presence of TDG. After incubation of inoculated LB medium or uninoculated LB medium containing TDG for 2 days, TDG amount of the culture filtrate was analyzed to decrease noticeably by HPLC. TDG and alcohols were also oxidized by cell-free extract of the isolate with maximum activities at pH 8.0 and $45^{\circ}C$.

탄소원으로 thiodiglycol(TDG)을 함유한 배지에서 농후배양하여 인삼토양으로부터 TDG 분해균을 분리하였다. 분리균 WS-32의 형태적, 생화학적, 유전학적 특성을 조사한 결과 분리균이 Alcaligenes faecalis와 유사한 생화학적 성질을 지니고 있으며, 16S rRNA 서열이 Cupriavidus 속 균주와 유사도가 높은 균주로 판명되었다. WS-32는 $33^{\circ}C{\sim}37^{\circ}C$, pH $6.0{\sim}8.0$에서 성장이 우수하였으며, TDG에 의해 성장에 약간의 저해를 받지만, 배양후기에서는 이를 탄소원으로 이용하는 현상을 보였다. HPLC를 통해 배양액 내 잔존하는 TDG를 분석한 결과 2일 배양하였을 때 배지내 잔존하는 TDG가 상당량 감소한 것으로 확인되었다. 분리균 WD-32의 균체 파쇄상등액은 TDG의 산화활성을 보였으며, pH 8.0과 $45^{\circ}C$에서 산화활성이 가장 높았다.

Keywords

References

  1. Brimfield, A.A., M.J. Novak, and E. Hodgson. 2006. Thiodiglycol, the hydrolysis product of sulfur mustard: analysis of in vitro biotransformation by mammalian alcohol dehydrogenases using nuclear magnetic resonance. Toxicol. Appl. Pharmacol. 213, 207-215 https://doi.org/10.1016/j.taap.2005.11.009
  2. Chun, J., J.-H. Lee, Y. Jung, M. Kim, S. Kim, B.K. Kim, and Y.W. Lim. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57, 2259-2261 https://doi.org/10.1099/ijs.0.64915-0
  3. Ermakova, I.T., I.I. Starovoitov, E.B. Tikhonova, A.V. Slepen'kin, K.I. Kashparov, and A.M. Boronin. 2002. Bioutilization of thiodiglycol, the product of mustard detoxification: isolation of degradings strains, study of biodegradation process and metabolic pathways. Prog. Biochem. 38, 31-39 https://doi.org/10.1016/S0032-9592(02)00045-6
  4. Garcia-Ruiz, V., L.E. Martin-Otero, and A. Puyet. 2002. Transformation of thiodiglycol by resting cells of Alcaligenes xylosoxydans PGH10. Biotechnol. Prog. 18, 252-256 https://doi.org/10.1021/bp010190x
  5. Kim, J.-W., E.I. Rainina, E. Efremenko, C.R. Engler, and J.R. Wild. 1997. Degradation of thiodiglycol, the hydrolysis product of sulfur mustard, with bacteria immobilized within poly(vinyl) alcohol cryogels. Biotechnol. Lett. 19, 1067-1071 https://doi.org/10.1023/A:1018476107377
  6. Lee, E.-H., C.-J. Kim, and K.-H. Yoon. 2005. Characterization and xylanase productivity of Streptomyces sp. WL-2. Kor. J. Microbiol. Biotechnol. 33, 178-183
  7. Lee, T.-S., M.Q. Pham, W.A. Weigand, S.P. Harvey, and W.E. Bentley. 1996. Strategies for the treatment of growth-inhibitory waste: an analysis of thiodiglycol degradation, the main hydrolysis product of sulfur mustard. Biotechnol. Prog. 12, 533-539 https://doi.org/10.1021/bp9600290
  8. Lee, T.-S., S.H. Chan, W.A. Weigand, and W.E. Bentley. 2000. Biocatalytic transformation of [(2-Hydroxyethyl)thio]acetic acid and thiodiglycolic acid from thiodiglycol by Alcaligenes xylosoxydans ssp. xylosoxydans (SH91). Biotechnol. Prog. 16, 363-367 https://doi.org/10.1021/bp000044b
  9. Lee, T.-S., W.A. Weigand, and W.E. Bentley. 1997. Observations of metabolic formation and variable yield in thiodiglycol biodegradation process impact on reactor design. Appl. Biochem. Biotechnol. 63-65, 743-757 https://doi.org/10.1007/BF02920472
  10. Medvedeva, N., Y. Polyak, T. Zaytseva, and S. Zinovieva. 2007. Soil bacterium Pseudomonas sp.: destroyer of mustard gas hydrolysis products. Biotechnol. J. 2, 1033-1039 https://doi.org/10.1002/biot.200700011
  11. Tikhonova, E.B., I.T. Ermakova, A.V. Slepen'kin, K.I. Kashparov, I.I. Starovoitov, and A.M. Boronin. 2002. The bioutilization of thiodiglycol (a breakdown product of mustard gas): isolation of degraders and investigation of degradation conditions. Microbiology 71, 211-216 https://doi.org/10.1023/A:1015158507123
  12. Yang, Y.-C., L.L. Szafraniec, W.T. Beaudry, and J.R. Ward. 1988. Kinetics and mechanism of the hydrolysis of 2-chloroethyl sulfides. J. Org. Chem. 53, 3293-3297 https://doi.org/10.1021/jo00249a029