References
- 강선철, 최명철. 1998. 인산가용화 사상균 Penicillium sp. PS-113 균주의 분리 및 배 양 특성. 한국생물공학회지 13, 497-501
- 전종수, 안태석, 송홍규. 2003. 식물생장을 촉진하는 토양세균들의 indoleacetic acid 생성능과 인산 가용화능. 기초과학연구 14, 183-192
- Arora, D.K., A.B. Filonow, and J.L. Lockwood. 1983. Bacterial chemotaxis to fungal propagaules in vitro and soil. Can. J. Microbiol. 29, 1104-1109 https://doi.org/10.1139/m83-170
- Cho, J.Y., K.C. Nah, and S.J. Chung. 1998. Effects of seed immersion and bacterialization into peat moss compost with culture solution of photosynthetic bacteria on the early growth of tomato plug seedlings. J. Kor. Soc. Hort. Sci. 39, 24-29
- Cleaceri, L.S., A.E. Greenmerg, and A.D. Eaton. 1998. Standard methods for examination of water and wastewater. 20th (ed). APHA-AWWA-WEF. Washington, D.C., USA
- Cohen, J.D., J.P. Slovin, and A.M. Hendrickson. 2003. Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. TREND Plant Sci. 8, 197-199 https://doi.org/10.1016/S1360-1385(03)00058-X
- De Fritas, J.R., M.R. Banerjee, and J.J. Germida. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Bio. Fertil. Soils 24, 358-364 https://doi.org/10.1007/s003740050258
- Dey, R., K.K. Pal, D.M. Bhatt, and S.M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis phygaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159, 371-394 https://doi.org/10.1016/j.micres.2004.08.004
- Freitas, J.R., M.R. Banerjee, and J.J. Germida. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 24, 358-364 https://doi.org/10.1007/s003740050258
- Gray, E.J. and D.L. Smith. 2005. Intracellular and extracellular PGPR commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol. Biochem. 37, 395-412 https://doi.org/10.1016/j.soilbio.2004.08.030
- Hilda, R. and F. Reynaldo. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319-339 https://doi.org/10.1016/S0734-9750(99)00014-2
- Karadeniz, A., S.F. Topcuoglu, and S. Inan. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World. J. Microbiol. Biotech. 22, 1061-1064 https://doi.org/10.1007/s11274-005-4561-1
- Leach, A.M., D.L. Burden, and G.M. Hieftje. 1999. Radioluminescence detecter for the flow injection determination of phosphorus as vanadomolydophosphoric acid. Anal. Chim. Acta 402, 267-274 https://doi.org/10.1016/S0003-2670(99)00536-X
- Leveau, J.H.J. and S.E. Lindow. 2005. Utilization of plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71, 2365-2371 https://doi.org/10.1128/AEM.71.5.2365-2371.2005
- Lifshitz, R., K.W. Kilepper, M. Kozlowski, C. Simonson, J. Carlson, E.M. Tipping, and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic condition. Can. J. Microbiol. 33, 390-395 https://doi.org/10.1139/m87-068
- Macros, A., S. Gagne, and H. Antoun. 1995. Effect of compost on rhizosphere microflora of tomato and on the incidence of plant growth-promotion rhizobacteria. Appl. Environ. Microbiol. 61, 194-199
- Mayak, S., T. Tarosh, and B.R. Glick. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166, 525-530 https://doi.org/10.1016/j.plantsci.2003.10.025
- Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27, 31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
- Muzyer, G., C.W. Ellen, and G.U. Andre. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700
- Narsian, V. and H.H. Patel. 2000, Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol. Biochem. 32, 559-565 https://doi.org/10.1016/S0038-0717(99)00184-4
- Patten, C.L. and B.R. Glick. 2002. Role of pseudomonas putida indolacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801 https://doi.org/10.1128/AEM.68.8.3795-3801.2002
- Pompei, R., G. Cornaglia, A. Ingianni, and G. Satta. 1990. Use of a novel phosphatase test for simplified identification of species of the tribe Proteeae. J. Clin. Microbiol. 28, 1214-1218
- Scher, F.M., J.W. Kloepper, and C.A. Singleton. 1985. Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Can. J. Microbiol. 31, 570-574 https://doi.org/10.1139/m85-106
- Seymour, P.W.K. and N. Doetsch. 1973. Chomotaxis responses by motile bacteria. J. Gen. Microbiol. 78, 287-296 https://doi.org/10.1099/00221287-78-2-287
- Stamford, N.P., P.R. Santo, C.E.S. Snatos, A.D.S. Freitas, S.H.L. Dias, and M.A. Lira, Jr. 2007. Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil. Biores. Technol. 98, 1311-1318 https://doi.org/10.1016/j.biortech.2006.04.037
- Whitelaw, M.A., T.J. Harden, and K.R. Helyar. 1999. Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31, 655-665 https://doi.org/10.1016/S0038-0717(98)00130-8