DOI QR코드

DOI QR Code

Analytical Noise Parameter Model of Short-Channel RF MOSFETs

  • Jeon, Jong-Wook (School of Electrical Engineering, Seoul National University) ;
  • Park, Byung-Gook (School of Electrical Engineering, Seoul National University) ;
  • Lee, Jong-Duk (School of Electrical Engineering, Seoul National University) ;
  • Shin, Hyung-Cheol (School of Electrical Engineering, Seoul National University)
  • Published : 2007.06.30

Abstract

In this paper, a simple and improved noise parameter model of RF MOSFETs is developed and verified. Based on the analytical model of channel thermal noise, closed form expressions for four noise parameters are developed from proposed equivalent small signal circuit. The modeling results show a excellent agreement with the measured data of $0.13{\mu}m$ CMOS devices.

Keywords

References

  1. E. Morifuji, H. S. Momose, T. Ohguro, T. Yoshitomi, and H. Kimijima, 'Future perspective and scaling down roadmap for RF CMOS,' Symp. VLSI Technology, pp. 163-164, 1999
  2. J. N. Burghartz, M. Hargrove, C. S. Webster, R. A. Groves, M. Keene, K. A. Jenkins, R. Logan, and E. Nowak, 'RF potential of a 0.18-${\mu}m$ CMOS logic device technology,' IEEE Trans. Electron Devices, vol. 47, no. 4, pp. 864-870, April 2000 https://doi.org/10.1109/16.831006
  3. G. Knoblinger, P. Klein, and M. Tiebout , 'A new model for thermal channel noise of deepsubmicron MOSFETs and its application in RFCMOS design,' IEEE J. Solid-State Circuits, vol. 36, pp. 831-837, May 2001 https://doi.org/10.1109/4.918922
  4. C. Enz, 'An MOS Transistor Model for RF IC Design Valid in All Regions of Operation,' IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 1, pp. 342-359, Jan. 2002 https://doi.org/10.1109/22.981286
  5. H. Shin, S. Kim, and J. Jeon, 'Analytical Thermal Noise Model of Deep-submicron MOSFETs,' Journal of Semiconductor Technology and Science, vol. 5, no. 3, Sept, 2005
  6. K. Han, H. Shin, and K. Lee, 'Analytical drain thermal noise current model valid for deep submicron MOSFETs,' IEEE Trans. Electron Devices, vol. 51, No. 2, pp. 261-269, Feb. 2004 https://doi.org/10.1109/TED.2003.821708
  7. J. Jeon, J. D. Lee, B. G. Park, and H. Shin, ' An Analytical Channel Thermal Noise Model for Deep Sub-micron MOSFETs with Short Channel Effects,' Solid-State Electron, to be published
  8. I. Kwon, M. Je, K. Lee, and H. Shin, 'A Simple and Analytical Parameter Extraction Method of MOSFET for Microwave Modeling,' IEEE Trans. Microwave Theory and Techniques, vol. 50, no. 6, pp. 1503-1509, June 2002 https://doi.org/10.1109/TMTT.2002.1006411
  9. T. H. Lee, 'The Design of CMOS Radio-Fre quency Integrated Circuits,' Cambridge, U.K. : Cambridge Univ. Press, 1998
  10. S. Asgaran, M. J. Deen, and C. H. Chen, 'Analytical Modeling of MOSFETs Channel Noise and Noise Parameters,' IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2109-2114, Dec. 2004 https://doi.org/10.1109/TED.2004.838450

Cited by

  1. On the RF Series Resistance Extraction of Nanoscale MOSFETs vol.18, pp.10, 2008, https://doi.org/10.1109/LMWC.2008.2003472
  2. Deembedding Accuracy for Device Scale and Interconnection Line Parasitics vol.19, pp.11, 2009, https://doi.org/10.1109/LMWC.2009.2032011
  3. Size efficient low-noise amplifier for 2.4 GHz ISM-band transceiver vol.51, pp.10, 2009, https://doi.org/10.1002/mop.24600
  4. 0.7 V supply highly linear subthreshold low-noise amplifier design for 2.4 GHz wireless sensor network applications vol.51, pp.5, 2009, https://doi.org/10.1002/mop.24333
  5. Temporal Noise Analysis and Reduction Method in CMOS Image Sensor Readout Circuit vol.56, pp.11, 2009, https://doi.org/10.1109/TED.2009.2030619
  6. Experimental Investigation of Quasi-Ballistic Carrier Transport Characteristics in 10-nm Scale MOSFETs vol.10, pp.5, 2011, https://doi.org/10.1109/TNANO.2010.2091421
  7. A Unified Channel Thermal Noise Model for Short Channel MOS Transistors vol.13, pp.3, 2013, https://doi.org/10.5573/JSTS.2013.13.3.213
  8. Accurate Extraction of Excess Channel Thermal Noise Coefficient in Berkeley Short-Channel Insulated Gate Field-Effect Transistor Model 4 vol.48, pp.4, 2009, https://doi.org/10.1143/JJAP.48.04C037