Genistein Combined with Exercise Improves Lipid Profiles and Leptin Levels in C57BL/6J Mice Fed a High Fat Diet

  • Seong, So-Hui (Department of Food Science and Human Nutrition, and Research Institute of Human Ecology, Chonbuk National University) ;
  • Ahn, Eun-Mi (Department of Food Science and Human Nutrition, and Research Institute of Human Ecology, Chonbuk National University) ;
  • Sohn, Hee-Sook (Department of Food Science and Human Nutrition, and Research Institute of Human Ecology, Chonbuk National University) ;
  • Baik, Sang-Ho (Department of Food Science and Human Nutrition, and Research Institute of Human Ecology, Chonbuk National University) ;
  • Park, Hyun-Woo (Department of Health Products Research, Amore Pacific Co., R&D Center) ;
  • Lee, Sang-Jun (Department of Health Products Research, Amore Pacific Co., R&D Center) ;
  • Cha, Youn-Soo (Department of Food Science and Human Nutrition, and Research Institute of Human Ecology, Chonbuk National University)
  • 발행 : 2007.12.31

초록

The aim of this study is to determine the anti-obesity effects of genistein and exercise, separately and in combination, in mice. Fifty male C57BL/6J mice were divided into 5 treatment groups: normal diet (ND), high fat diet (HD), high fat diet with exercise (HD+Ex), high fat diet with 0.2% genistein (HD+G), high fat diet with 0.2% genistein, and exercise (HD+G+Ex). They were allowed free access to feed and water, and exercised mice engaged in swimming on a regular basis for 12 weeks. Genistein supplemented mice gained less weight, had lower energy intake, better lipid profiles, and lower leptin than the HD mice. Furthermore, when genistein was combined with exercise (HD+G+Ex) the effects were even greater. HD, HD+Ex, and HD+G mice exhibited increased hepatic CPT-1 mRNA expression. Therefore, genistein and exercise has anti-obesity effects, as shown by changes in body weight, fat accumulation, energy intake, and leptin levels.

키워드

참고문헌

  1. Kurscheid T, Lauterbach K. The cost implications of obesity for health care and society. Int. J. Obes. Relat. Metab. Disord. 22: S3-5; discussion S6 (1998)
  2. Kuczmarski RJ, Flegal KM, Campbell SM, Johnson CL. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys 1960 to 1991. J. Am. Med. Assoc. 272: 205-211 (1994) https://doi.org/10.1001/jama.272.3.205
  3. Solomon CG, Manson JE. Obesity and mortality: a review of the epidemiologic data. Am. J. Clin. Nutr. 66: 1044S-1050S (1997)
  4. Maksvytis A, Stakisaitis D. Impact of obesity on lipid profiles in middle-aged women. Medicina 40: 553-557 (2004)
  5. Couillard C, Bergeron N, Prud'homme D, Bergeron J, Tremblay A, Bouchard C, Mauriege P, Despres JP. Postprandial triglyceride response in visceral obesity in men. Diabetes 47: 953-960 (1998) https://doi.org/10.2337/diabetes.47.6.953
  6. Boden G. Free fatty acids-the link between obesity and insulin resistance. Endocr. Pract. 7: 44-51 (2001) https://doi.org/10.4158/EP.7.1.44
  7. Chan DC, Watts GF, Barrett PH, Mamo JC, Redgrave TG. Markers of triglyceride-rich lipoprotein remnant metabolism in visceral obesity. Clin. Chem. 48: 278-283 (2002)
  8. Rosengren A, Wilhelmsen L. Physical activity protects against coronary death and death from all causes in middle aged men. Evidence from a 20-year follow-up of the primary prevention study in Goteborg. Ann. Epidemiol. 7: 69-75 (1997) https://doi.org/10.1016/S1047-2797(96)00106-8
  9. Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin. Exp. Pharmacol. P. 29: 218-222 (2002) https://doi.org/10.1046/j.1440-1681.2002.03623.x
  10. Koutsari C, Karpe F, Humphreys SM, Frayn KN, Hardman AE. Exercise prevents the accumulation of triglyceride-rich lipoproteins and their remnants seen when changing to a high-carbohydrate diet. Arterioscl. Throm. Vas. 21: 1520-1525 (2001) https://doi.org/10.1161/hq0901.095553
  11. Kang HY, Lee SC, Park DI, Kwan BA, Ivy JL. Disciplinary sport physiology - : The effects of exercise training on body composition of obese Zucker rats. Korean J. Phys. Edu. 2203-2210 (1995)
  12. Naaz A, Yellayi S, Zakroczymski MA, Bunick D, Doerge DR, Lubahn DB, Helferich WG, Cooke PS. The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 144: 3315- 3320 (2003) https://doi.org/10.1210/en.2003-0076
  13. Szkudelska K, Nogowski L, Szkudelski T. Genistein affects lipogenesis and lipolysis in isolated rat adipocytes. J. Steroid Biochem. 75: 265-271 (2000) https://doi.org/10.1016/S0960-0760(00)00172-2
  14. Szkudelski T, Nogowski L, Pruszynska-Oszmalek E, Kaczmarek P, Szkudelska K. Genistein restricts leptin secretion from rat adipocytes. J. Steroid Biochem. 96: 301-307 (2005) https://doi.org/10.1016/j.jsbmb.2005.04.033
  15. Vedavanam K, Srijayanta S, O'Reilly J, Raman A, Wiseman H. Antioxidant action and potential anti-diabetic properties of an isoflavonoid-containing soybean phytochemical extract (SPE). Phytother. Res. 13: 601-608 (1999) https://doi.org/10.1002/(SICI)1099-1573(199911)13:7<601::AID-PTR550>3.0.CO;2-O
  16. Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. Dietary isoflavones reduced plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor-deficient mice. J. Nutr. 128: 954-959 (1998)
  17. Matsumoto K, Ishihara K, Tanaka K, Inoue K, Fushiki T. An adjustable-current swimming pool for the evaluation of endurance capacity of mice. J. Appl. Physiol. 81: 1843-1849 (1996) https://doi.org/10.1152/jappl.1996.81.4.1843
  18. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  19. Cederblad G, Lindstedt S. A method for the determination of carnitine in the picomole range. Clin. Chim. Acta 37: 235-243 (1972) https://doi.org/10.1016/0009-8981(72)90438-X
  20. Sachan DS, Rhew TH, Ruark RA. Ameliorating effects of carnitine and its precursors on alcohol-induced fatty liver. Am. J. Clin. Nutr. 39: 738-744 (1984) https://doi.org/10.1093/ajcn/39.5.738
  21. Kim SJ, Sohn IS, Lee YS, Lee YS. Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J. Nutr. 135: 33-41 (2005) https://doi.org/10.1093/jn/135.1.33
  22. Chung EJ, Um YS, Cha YS, Park TS. High fat diet or exercise training alters hepatic total and phospholipids fatty acid composition in rats. Korean J. Nutr. 33: 13-22 (2000)
  23. Fiebig RG, Hollander JM, Ney D, Boileau R, Jeffery E, Ji LL. Training down-regulates fatty acid synthase and body fat in obese Zucker rats. Med. Sci. Sport Exer. 34: 1106-1114 (2002) https://doi.org/10.1097/00005768-200207000-00009
  24. Wu J, Wang X, Chiba H, Higuchi M, Nakatani T, Ezaki O, Cui H, Yamada K, Ishimi Y. Combined intervention of soy isoflavone and moderate exercise prevents body fat elevation and bone loss in ovariectomized mice. Metabolism 53: 942-948 (2004) https://doi.org/10.1016/j.metabol.2004.01.019
  25. Beynen AC, West CE, Spaaij CJ, Huisman J, Van Leeuwen P, Schutte JB, Hackeng WH. Cholesterol metabolism, digestion rates, and postprandial changes in serum of swine fed purified diets containing either casein or soybean protein. J. Nutr. 120: 422-430 (1990) https://doi.org/10.1093/jn/120.5.422
  26. Kim S, Shin HJ, Kim SY, Kim JH, Lee YS, Kim DH, Lee MO. Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPARalpha. Mol. Cell. Endocrinol. 220: 51-58 (2004) https://doi.org/10.1016/j.mce.2004.03.011
  27. Park SA, Choi MS, Cho SY, Seo JS, Jung UJ, Kim MJ, Sung MK, Park YB, Lee MK. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci. 79: 1207-1213 (2006) https://doi.org/10.1016/j.lfs.2006.03.022
  28. Kang DK. The effects of aquatic exercise on body composition and serum lipids in obese middle-aged women. Korean J. Phys. Edu. 40: 519-527 (2001)
  29. Kim BS, Kang HY. The influence of rope skipping training on body fat, cardiovascular endurance, and blood lipids in obese adolescents. Korean J. Sport Res. 16: 509-516 (2005)
  30. Jo HS, Ko YH, Soh JR, Cha YS. Effects of aerobic exercise on carnitine concentration in rat's skeletal muscle. Korean J. Exer. Nutr. 8: 235-241 (2004)
  31. Vaz FM, Wanders RJ. Carnitine biosynthesis in mammals. Biochem. J. 361: 417-429 (2002) https://doi.org/10.1042/0264-6021:3610417
  32. Hagstrom-Toft E, Thorne A, Reynisdottir S, Moberg E, Rossner S, Bolinder J, Arner P. Evidence for a major role of skeletal muscle lipolysis in the regulation of lipid oxidation during caloric restriction in vivo. Diabetes 50: 1604-1611 (2001) https://doi.org/10.2337/diabetes.50.7.1604
  33. Kraemer RR, Chu H, Castracane VD. Leptin and exercise. Exp. Biol. Med. 227: 701-708 (2002) https://doi.org/10.1177/153537020222700903
  34. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425-432 (1994); erratum in: Nature 374: 479 (1995) https://doi.org/10.1038/374425a0
  35. Lonnqvist F, Arner P, Nordfors L, Schalling M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat. Med. 1: 950-953 (1995) https://doi.org/10.1038/nm0995-950
  36. Jeusette IC, Detilleux J, Shibata H, Saito M, Honjoh T, Delobel A, Istasse L, Diez M. Effects of chronic obesity and weight loss on plasma ghrelin and leptin concentrations in dogs. Res. Vet. Sci. 79: 169-175 (2005) https://doi.org/10.1016/j.rvsc.2004.11.012
  37. Miyatake N, Takahashi K, Wada J, Nishikawa H, Morishita A, Suzuki H, Kunitomi M, Makino H, Kira S, Fujii M. Changes in serum leptin concentrations in overweight Japanese men after exercise. Diabetes Obes. Metab. 6: 332-337 (2004) https://doi.org/10.1111/j.1462-8902.2004.00351.x
  38. Ozcelik O, Dogan H, Celik H, Ayar A, Serhatlioglu S, Kelestimur H. Effects of different weight loss protocols on serum leptin levels in obese females. Physiol. Res. 54: 271-277 (2005)
  39. Phipps WR, Wangen KE, Duncan AM, Merz-Demlow BE, Xu X, Kurzer MS. Lack of effect of isoflavonic phytoestrogen intake on leptin concentrations in premenopausal and postmenopausal women. Fertil. Steril. 75: 1059-1064 (2001) https://doi.org/10.1016/S0015-0282(01)01777-0
  40. Shin ES, Cho SY, Lee EH, Lee SJ, Chang IS, Lee TR. Positive regulation of hepatic carnitine palmitoyl transferase 1A (CPT1A) activities by soy isoflavones and L-carnitine. Eur. J. Nutr. 45: 159- 164 (2006) https://doi.org/10.1007/s00394-005-0576-5
  41. Kim E, Park H, Cha YS. Exercise training and supplementation with carnitine and antioxidants increases carnitine stores, triglyceride utilization, and endurance in exercising rats. J. Nutr. Sci. Vitaminol. 50: 335-343 (2004) https://doi.org/10.3177/jnsv.50.335
  42. Yang JY, Nam JH, Park H, Cha YS. Effects of resistance exercise and growth hormone administration at low doses on lipid metabolism in middle-aged female rats. Eur. J. Pharmacol. 539: 99-107 (2006) https://doi.org/10.1016/j.ejphar.2006.03.079
  43. Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A, Hawley JA, Hargreaves M. A short-term, high-fat diet up -regulates lipid metabolism and gene expression in human skeletal muscle. Am. J. Clin. Nutr. 77: 313-318 (2003) https://doi.org/10.1093/ajcn/77.2.313
  44. Sandikci KS, Gumustas MK, Tuter Y, Kokoglu E, Ozyurt E, Sozer V. Total acid soluble and insoluble carnitine levels in human brain tumors. Cancer Biochem. Bioph. 17: 49-57 (1999)