DOI QR코드

DOI QR Code

A NEW SYSTEM OF GENERALIZED NONLINEAR MIXED QUASIVARIATIONAL INEQUALITIES AND ITERATIVE ALGORITHMS IN HILBERT SPACES

  • Published : 2007.07.30

Abstract

We introduce a new system of generalized nonlinear mixed quasivariational inequalities and prove the existence and uniqueness of the solution for the system in Hilbert spaces. The main result of this paper is an extension and improvement of the well-known corresponding results in Kim-Kim [16], Noor [21]-[23] and Verma [24]-[26].

Keywords

References

  1. C. Baiocchi and A. Caopelo, Variational and quasivariational inequalities, John Wiley & Sons, Inc., New York, 1984
  2. A. Bensounssan and J. L. Lions, Impulse Control and Quasivariational Inequalities, Gauthiers-Villers, Bordas, Paris, 1984
  3. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London, 1973
  4. S. S. Chang, J. K. Kim, and K. H. Kim, On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 268 (2002), no. 1, 89-108 https://doi.org/10.1006/jmaa.2001.7800
  5. S. S. Chang, J. K. Kim, and Y. M. Nam, Multivalued quasi-variational inclusions and multivalued accretive equations, Comput. Math. Appl. 48 (2004), no. 10-11, 1441-1452 https://doi.org/10.1016/j.camwa.2004.08.005
  6. Y. P. Fang, N. J. Huang, and J. K. Kim, A system of multi-valued generalized order complementarity problems in ordered metric spaces, Z. Anal. Anwendungen 22 (2003), no. 4, 779-788
  7. Y. P. Fang, N. J. Huang, and J. K. Kim, Existence results for systems of vector equilibrium problems, J. Global Optim. 35 (2006), no. 1, 71-83 https://doi.org/10.1007/s10898-005-1654-1
  8. F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Plenum Press, New York, 1995
  9. R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Publication Co., Philadelphia, 1989
  10. N. J. Huang, Generalized nonlinear variational inclusions with noncompact valued mapping, Appl. Math. Lett. 9 (1996), no. 3, 25-29
  11. N. J. Huang, On the generalized implicit quasivariational inequalities, J. Math. Anal. Appl. 216 (1997), no. 1, 197-210 https://doi.org/10.1006/jmaa.1997.5671
  12. N. J. Huang, Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit quasivariational inclusions, Comput. Math. Appl. 35 (1998), no. 10, 1-7
  13. N. J. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Comput. Math. Appl. 35 (1998), no. 10, 9-14
  14. N. J. Huang, Y. P. Liu, Y. Y. Tang, and M. R. Bai, The generalized set-valued strongly nonlinear implicit variational inequalities, Comput. Math. Appl. 37 (1999), no. 10, 29-36 https://doi.org/10.1016/S0898-1221(99)00123-6
  15. N. J. Huang, M. R. Bai, Y. J. Cho, and S. M. Kang, Generalized nonlinear mixed quasi-variational inequalities, Comput. Math. Appl. 40 (2000), no. 2-3, 205-215 https://doi.org/10.1016/S0898-1221(00)00154-1
  16. J. K. Kim and D. S. Kim, A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal. 11 (2004), no. 1, 235-243
  17. J. K. Kim, Y. M. Nam, N. J. Huang, and H. Dong, On generalized vector variational inequalities with set-valued mappings, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13 (2006), no. 2, 221-230
  18. J. K. Kim, K. H. Kim, and K. S. Kim, Set-valued quasivariational inclusions and implicit resolvent equations in Banach spaces, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11 (2004), no. 4, 491-502
  19. H. Y. Lan, J. K. Kim, and N. J. Huang, On the generalized nonlinear quasi-variational inclusions involving non-monotone set-valued mappings, Nonlinear Funct. Anal. and Appl. 9 (2004), no. 3, 451-465
  20. J. Li, N. J. Huang, and J. K. Kim, On implicit vector equilibrium problems, J. Math. Anal. Appl. 283 (2003), no. 2, 501-512 https://doi.org/10.1016/S0022-247X(03)00277-4
  21. M. A. Noor, Set-valued quasivariational inclusions, Korean J. Comput. Appl. Math. 7 (2000), no. 1, 101-113
  22. M. A. Noor, K. I. Noor, and Th. M. Rassias, Set-valued resolvent equations and mixed variational inequalities, J. Math. Anal. Appl. 220 (1998), no. 2, 741-759 https://doi.org/10.1006/jmaa.1997.5893
  23. M. A. Noor, K. I. Noor, and Th. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993), no. 3, 285-312 https://doi.org/10.1016/0377-0427(93)90058-J
  24. R. U. Verma, On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot-Line 3 (1999), no. 8, 65-68
  25. R. U. Verma, Projection methods, Algorithms and a new system of nonlinear variational inequalities, Compu. Math. Appl. 41 (2001), no. 7-8, 1025-1031 https://doi.org/10.1016/S0898-1221(00)00336-9
  26. R. U. Verma, Iterative algorithms and a new system of nonlinear quasivariational inequalities, Adv. Nonlinear Var. Inequal. 4 (2001), no. 1, 117-124

Cited by

  1. Solution sensitivity of generalized nonlinear parametric (A,η,m)-proximal operator system of equations in Hilbert spaces vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-362
  2. Perturbed Mann iterative method with errors for a new system of generalized nonlinear variational-like inclusions vol.51, pp.1-2, 2010, https://doi.org/10.1016/j.mcm.2009.08.041
  3. An Iteration Method for Common Solution of a System of Equilibrium Problems in Hilbert Spaces vol.2011, pp.1, 2011, https://doi.org/10.1155/2011/780764
  4. A New Method for Solving Monotone Generalized Variational Inequalities vol.2010, pp.1, 2010, https://doi.org/10.1155/2010/657192
  5. Convergence theorems for common solutions of various problems with nonlinear mapping vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-2
  6. On the hierarchical variational inclusion problems in Hilbert spaces vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-179
  7. Weak convergence of algorithms for asymptotically strict pseudocontractions in the intermediate sense and equilibrium problems vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1812-2012-132
  8. System of Extended General Variational Inequalities for Relaxed Cocoercive Mappings in Hilbert Space vol.6, pp.10, 2018, https://doi.org/10.3390/math6100198