References
- C. Baiocchi and A. Caopelo, Variational and quasivariational inequalities, John Wiley & Sons, Inc., New York, 1984
- A. Bensounssan and J. L. Lions, Impulse Control and Quasivariational Inequalities, Gauthiers-Villers, Bordas, Paris, 1984
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London, 1973
- S. S. Chang, J. K. Kim, and K. H. Kim, On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces, J. Math. Anal. Appl. 268 (2002), no. 1, 89-108 https://doi.org/10.1006/jmaa.2001.7800
- S. S. Chang, J. K. Kim, and Y. M. Nam, Multivalued quasi-variational inclusions and multivalued accretive equations, Comput. Math. Appl. 48 (2004), no. 10-11, 1441-1452 https://doi.org/10.1016/j.camwa.2004.08.005
- Y. P. Fang, N. J. Huang, and J. K. Kim, A system of multi-valued generalized order complementarity problems in ordered metric spaces, Z. Anal. Anwendungen 22 (2003), no. 4, 779-788
- Y. P. Fang, N. J. Huang, and J. K. Kim, Existence results for systems of vector equilibrium problems, J. Global Optim. 35 (2006), no. 1, 71-83 https://doi.org/10.1007/s10898-005-1654-1
- F. Giannessi and A. Maugeri, Variational Inequalities and Network Equilibrium Problems, Plenum Press, New York, 1995
- R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Publication Co., Philadelphia, 1989
- N. J. Huang, Generalized nonlinear variational inclusions with noncompact valued mapping, Appl. Math. Lett. 9 (1996), no. 3, 25-29
- N. J. Huang, On the generalized implicit quasivariational inequalities, J. Math. Anal. Appl. 216 (1997), no. 1, 197-210 https://doi.org/10.1006/jmaa.1997.5671
- N. J. Huang, Mann and Ishikawa type perturbed iterative algorithms for generalized nonlinear implicit quasivariational inclusions, Comput. Math. Appl. 35 (1998), no. 10, 1-7
- N. J. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Comput. Math. Appl. 35 (1998), no. 10, 9-14
- N. J. Huang, Y. P. Liu, Y. Y. Tang, and M. R. Bai, The generalized set-valued strongly nonlinear implicit variational inequalities, Comput. Math. Appl. 37 (1999), no. 10, 29-36 https://doi.org/10.1016/S0898-1221(99)00123-6
- N. J. Huang, M. R. Bai, Y. J. Cho, and S. M. Kang, Generalized nonlinear mixed quasi-variational inequalities, Comput. Math. Appl. 40 (2000), no. 2-3, 205-215 https://doi.org/10.1016/S0898-1221(00)00154-1
- J. K. Kim and D. S. Kim, A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal. 11 (2004), no. 1, 235-243
- J. K. Kim, Y. M. Nam, N. J. Huang, and H. Dong, On generalized vector variational inequalities with set-valued mappings, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13 (2006), no. 2, 221-230
- J. K. Kim, K. H. Kim, and K. S. Kim, Set-valued quasivariational inclusions and implicit resolvent equations in Banach spaces, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 11 (2004), no. 4, 491-502
- H. Y. Lan, J. K. Kim, and N. J. Huang, On the generalized nonlinear quasi-variational inclusions involving non-monotone set-valued mappings, Nonlinear Funct. Anal. and Appl. 9 (2004), no. 3, 451-465
- J. Li, N. J. Huang, and J. K. Kim, On implicit vector equilibrium problems, J. Math. Anal. Appl. 283 (2003), no. 2, 501-512 https://doi.org/10.1016/S0022-247X(03)00277-4
- M. A. Noor, Set-valued quasivariational inclusions, Korean J. Comput. Appl. Math. 7 (2000), no. 1, 101-113
- M. A. Noor, K. I. Noor, and Th. M. Rassias, Set-valued resolvent equations and mixed variational inequalities, J. Math. Anal. Appl. 220 (1998), no. 2, 741-759 https://doi.org/10.1006/jmaa.1997.5893
- M. A. Noor, K. I. Noor, and Th. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math. 47 (1993), no. 3, 285-312 https://doi.org/10.1016/0377-0427(93)90058-J
- R. U. Verma, On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot-Line 3 (1999), no. 8, 65-68
- R. U. Verma, Projection methods, Algorithms and a new system of nonlinear variational inequalities, Compu. Math. Appl. 41 (2001), no. 7-8, 1025-1031 https://doi.org/10.1016/S0898-1221(00)00336-9
- R. U. Verma, Iterative algorithms and a new system of nonlinear quasivariational inequalities, Adv. Nonlinear Var. Inequal. 4 (2001), no. 1, 117-124
Cited by
- Solution sensitivity of generalized nonlinear parametric (A,η,m)-proximal operator system of equations in Hilbert spaces vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-362
- Perturbed Mann iterative method with errors for a new system of generalized nonlinear variational-like inclusions vol.51, pp.1-2, 2010, https://doi.org/10.1016/j.mcm.2009.08.041
- An Iteration Method for Common Solution of a System of Equilibrium Problems in Hilbert Spaces vol.2011, pp.1, 2011, https://doi.org/10.1155/2011/780764
- A New Method for Solving Monotone Generalized Variational Inequalities vol.2010, pp.1, 2010, https://doi.org/10.1155/2010/657192
- Convergence theorems for common solutions of various problems with nonlinear mapping vol.2014, pp.1, 2014, https://doi.org/10.1186/1029-242X-2014-2
- On the hierarchical variational inclusion problems in Hilbert spaces vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1812-2013-179
- Weak convergence of algorithms for asymptotically strict pseudocontractions in the intermediate sense and equilibrium problems vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1812-2012-132
- System of Extended General Variational Inequalities for Relaxed Cocoercive Mappings in Hilbert Space vol.6, pp.10, 2018, https://doi.org/10.3390/math6100198