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ON THE PRINCIPAL IDEAL THEOREM

JUNG-JE SoN AND Soun-H1 Kwon

ABSTRACT. In this paper we give an example of imaginary quadratic
number field k such that every ideal of k becomes principal in some proper
subfields of the Hilbert class field of k.

1. Introduction

Let K be a finite extension of a number field k, clx and cly denote the
ideal class groups of K and k, respectively. We say that an ideal class of k
capitulates in K if it is in the kernel of the homomorphism

Jrm ¢ cy — cdi

induced by the extension of ideals from k to K. The kernel of j K/k is called
the capitulation kernel of the extension K/k, denoted by Cap(K/k). Let k be
the Hilbert class field of k. The principal ideal theorem says that cl; always
capitulates in k. However, Heider and Schmithals have found real quadratic
fields k such that clj capitulates in a proper subfield of & ([8]). For a prime p
let cl,(cp ) and @ be the p-class group of cli (i.e. the Sylow p-subgroup of cli)
and the Hilbert p-class field of k, respectively. Since cl,(cp ) capitulates in &®
for every prime p, clj, capitulates in a proper subfield of k if and only if there
exists a prime p such that cl,(f ) capitulates in a proper subfield of £®). Iwasawa
([10]) has proved the following:

Theorem 1. For each prime number p > 2, there exist infinitely many finite
algebraic number fields k such that cl,(cp ) capitulates in a proper subfield of k®.

Some examples of real quadratic fields k& such that cl,(f) capitulates in a
proper subfield of k() are given in [9] and [5]. (See also [14], [3], and [6]. For
more on the capitulation problem see [11].) Let C(n) be a cyclic group of order
n. In this paper we shall prove the following:

Theorem 2. Let k = Q(v/—8867-73681). We have cli, ~ C(210) x C(3) x
C(3) x C(3).
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(i) For all 40 proper subfield F;’s 1 < i < 40 of k® with |F; : k] = 27,
cl,(:') capitulates in F;.

(i) There exist at least 81 proper subfield L;’s of k& such that [L; : k] = 9
and cl ,(63)

Note that Q(\/—653329427) (653329427 = 8867 - 73681) is the first known
imaginary quadratic field whose 3-rank of the ideal class group is equal to 4
(see [4]). For | = 3 or 5, many authors have computed the capitulation kernels
in the unramified cyclic extensions of degree { of imaginary quadratic number
fields k such that 3-rank of cly is equal to 2 or 3 when | = 3, or 5-rank of cly
is equal to 2 when [ = 5 ([15], [8], and [12]).

The paper is organized in the following way. In Section 2, we first construct
the 40 unramified cyclic cubic extension K;’s 1 <i <40 of Q(v/—653329427)
by the method given in [7]. Second, for each of these 40 extensions K;/k
we determine explicitly the capitulation kernel Cap(K;/k) using the method
developed in {15] and [8]. In Section 3, we prove Theorem 2. All computations
were done with the aid of PARI-GP ([1]) on a workstation (SUN Sparc II).

capitulates in L;.

2. The capitulation kernels in the unramified cyclic cubic

extensions of Q(1/—653329427)

We will use the following notations. For a number field k we let Ey, d, I
and clx be the group of units, the discriminant, the group of fractional ideals
and the ideal class group of k, respectively. For a prime place p of k, let k, be
the completion of k at p and U, the group of units of k,. For a finite extension
K/k, Nk /i denotes the norm and Ek/x = {e € Ex | Ng/x(€) = 1}. ‘

Let k = Q(+/—653329427). The ideal class group of k is represented by the
reduced primitive quadratic forms:

clp = {a1,b,¢,d) ~ C(210) x C(3) x C(3) x C(3),
where
a1 = (1899, 1267,86221),b = (11271, 8927, 16259),
c = (6157, —875,26559), d = (1649,457,99081),
ay is of order 210, b,c and d are of order 3. Set a = a]® = (689,589, 237183).

Then cl,(f) = (a,b, ¢, d). To construct the unramified cyclic cubic extensions of
a quadratic number field we use the following proposition.

Proposition 1. Let k = Q(v/m) and ko = Q(\/mq) with
-m/3  if 3 divides m,
mo =
—3m otherwise.

Let o be an algebraic integer in ko satisfying the following:
(i) (@) = a® with a a non-principal ideal of ko, prime to 3;
(if) Niojg(a) =n® for some integer n with (n,3) = 1; and
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(iii) for every prime ideal p in ko lying above 3, there exists £ € ko such
that o = €3 mod pe+1, where e is the ramification indez of p.
Then the cubic polynomial

X3 —3nX — TrkO/Q(a)

defines a cubic number field whose discriminant is the same as that of k. More-
over, the splitting field of this cubic polynomial is an unramified cyclic cubic
extension of k.

Proof. See Theorem 1 and Lemma 2 in [7]. a

In order to determine the cubic polynomials we proceed as follows. We let
ko = Q(v/3 - 6563329427). Then cly, ~ C(6) x C(3) x C(3). First, we determine
40 triplet (z;,:,7:)’s of integers such that z? — 3-653329427y? = 4n3. Second,
using PARI-GP ([2] and [1]) we verify that these 40 polynomials

ri(X)=X3-3mX —x;

define non-isomorphic cubic number fields of discriminant —653329427. Finally,
we have used PARI-GP to simplify the coefficients of the polynomials. The 40
polynomial r;’s, 1 < ¢ < 40, are listed in Table 1. In what follows we let K;
denote the splitting field of the polynomial 7; over Q. Then K;’s 1 <4 < 40
are 40 unramified cyclic cubic extensions of k = Q(v/—653329427).

According to Hilbert’s Theorem 94 Cap(K;/k) is of order 3. Using the
method developed in [15] and [8] we will explicitly determine Cap(K;/k) for
1 £ < 40. Following [8], we let

Vi ={z € k* | (z) = o’ for some a € I;}
and
cri={ce€cl||c|=1 or I}
for a prime number {. We have an exact sequence

1 — Ey/EL — Vi Jk* 2, clgg — 1

(z) mod &* — [q]

of Fj-vector spaces. (Here, F is the finite field of integers mod [.) Let K be
an unramified cyclic extension of k of degree ! with Galois group G = (). Since
Niyi o jrr(c) = X, we have Ker jx /i C clg;. We let R(K/k) = E -
K*'N V4. Then A(K /k)/k* = Ker(jx ko ¢). For S a set of prime places in k,
let Vi) = {z € Vi|o € k! for all p € S}. When S = {p}, we let V,®) = V(9.
The following capitulation criterion is a generalization of the criterion that was
developed by Scholz and Taussky ([15]).

Theorem 3. Let K be a finite unramified cyclic extension of degree | of k with
Galois group G = (o). Let € be a set of generators of EK/,C/E}{_”, F a set of
generators of Ex/E}, 6 = dim clgy, p = dim Ker jg, and p = dim Ey/EL.
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(a) Letp be a prime ideal of k. Assume that
(i) p splits totally in K.
Then R(K/k) C Vk(p) if and only if p satisfies the following two
conditions:
(iiy n e k;l forallne F.
(ifi) e1-9)"7" ¢ Ky for all e € € and for all prime divisors Plp in K.

(b) Let [a] ¢ Kerjg/k, with o' = (z). The density of the prime ideals p
such that p satisfies the conditions (i), (ii), (iii), and
(iv) Nisq(p) = p and p is unramified over Q,
(v)p=1 mod I,
for p such that x & k', is equal to

mEa -1 ¢k,
()P(1 - ) if C €k,

where  is a primitive [-th root of unity.

(c) R(K/k) = Vk(s) for all sufficiently large sets S of prime ideals of k
satisfying (i), (ii), (iii), (iv) and (v). Moreover, we can choose S such
that #S = & — pu.

Proof. See Lemma 1 and Theorem 2 in [8]. ]

For the extensions K;/k 1 < i < 40 with k = Q(/—653329427), we have
l=36=4,p=1andcls = cl,(;'). From Theorem 3(c) we can explicitly
determine Cap(K;/k). As we have determined the polynomials r; defining K,
it is easy to find the prime ideals p that satisfy the conditions (i), (iv) and (v).
For the conditions (ii) and (iii), we have used the technique developed in [8].

By the existence theorem of class field theory, the map L —— Ny i(cl L)
is a 1-to-1 correspondence between the finite unramified abelian extensions
L/k and the subgroups of clx. In addition, the factor group clx/Ny  i(clr) is
isomorphic to the Galois group G(L/k) of the extension L/k. The subgroup
Ny k(clr) is called the norm group of the extension L/k. Furthermore, the
prime decomposition law is helpful to determine the norm group. In fact, let
p be an unramified prime ideal of k. The prime decomposition law says that if
the ideal class [p] is contained in Ny ,(clr), then p splits in L into a product
of n different prime ideals, where n = [L : k] (see Theorem 8.4 in [13]). We can
easily determine such prime ideals and the norm group N, /x(clk,) (see [8]).
In Table 1, we compile the polynomials r;, Cap(K;/k) and the norm groups
Ni,/e(clk,) mod cl} for all 1 < i < 40.
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Table 1. Cap(K;/k) and the norm groups of K;/k

i i Cap(K;/k) | Nk,/e(clk;) mod cl
1 ri(z) = z° + 506 x x — 2237 a’c {a, bc, d)
2 ra(z) = @3 — 2% + 463 * x + 2932 bed {a, b’c, bZd)
3 r3(z) = 2° — 27 + 367 * = + 3988 d (ab, bc?, dy
4 ra(z) = z° + 236 x ¢ — 4717 ab’c*d® (ab”, bd, c)
5 r5(x) = x° + 110 * z — 4899 a’d? {ab?,d, bc?)
6 re(x) = 25 — 27 + 9« x — 4922 a?b’ed® {ac, b%, cd”)
7 r7(z) = % — 7 — 153 % x — 4922 ab’c*d? {ab, c, d)
8 ra(z) = x° — 250 * £ — 5149 bc? {a,bc?, d)
9 ro(z) = 2% — 27 — 763 x = + 9746 a’b*cd” (a,b, cd)
10 rio{z) = 2° — 1114 * z — 15133 a?c*d® (a,bd, cd)
11 | ru(z) = 2® — 2% — 1597 = 2 + 25592 be {ad?,b,c)
12 | ri2(z) = ¥ — 2%+ 1581 « = + 23980 d (ab,c,b°d) |
13 ri3(z) = 2% 4 1493 * = — 32490 a*bed? {ad?,b°d, bc?)
14 | ria(x) = 2° — 2% + 1296 % x + 34588 be?d? {(ad, b, c)
15 | ris{x) = 2% — 27 + 576 « = + 38800 ab*d® {a, be, bd)
16 | ris(x) = ° — 2% — 1440 » z — 44144 abe {ac, b°d, cd)
17 | riz(z) = % — 27 — 627 * x + 44892 ab? {a,b,c)
18 | ris(z) = 2° — 2* + 1435 x z — 71238 bd* {a,bd, c)
19 | rie(z) = 2% — 2% — 1483 x z + 183824 bc? (a,bd”, bc)
20 roo{x) = 25 — 139 % x — 314822 be (b, ed, ac)
21 r21(x) = ° + 2519 * x — 301076 a’c’d® {(a’d, c, bd?)
22 | roa(x) = «° — 2° — 4373 x 2 — 220344 ab’c® (ab, c*d, bc)
23 | ras(x) =2° —2° — 3205 x o — 148994 | abc?d? (a,c,d)
24 | raa(z) = 2° — 2% + 4917 « = + 4014 b ed? (cd, b%d, ad)
25 ros(x) = =% — 4264 x z — 107283 ab {a,c,bd?%)
26 | ra6(x) = 2° — 27 — 4127 % & — 100802 abed? {a,b,d)
27 | rar(x) = «° — 2° — 5639 * z — 208380 a’c (a%c, be, d)
28 | ras(z) = 2° — 2% — 3511 x = 4 311738 bZcd? (ab, cd, bd)
29 | roo(x) = 2% — 2% + 3779 » 2 — 277372 a {ac, be, dy
30 | raofw) = 2° — 2% + 6526 2 — 41100 ab’d {a%c, b c, cd)
31 | rarlx) = 2® — 2% — 5029 » z + 270560 b2d> {ac, cd®, bc?)
32 | rs2(z) = 2° — 2% + 6289 x  — 257810 cd” {a,b,cd®y
33 rs3(z) = z° + 3614 * z — 301 d {ac, b, d)
34 | raa(z) = z° — x7 + 4101 * = + 84798 abc {ac?, b, cd)
35 | r3s(x) = a® — 27 + 2611 x = + 121620 ab’ {ad?, b, 2d)
36 | ras(x) = #° — 2° + 3193 x = + 61498 bd’ (ab,bd, c)
37|  rar(z) =% — 8371 x x — 297406 b (ab?, ¢, dy
38 | ras(x) =2 — x> — 3041 * x + 65758 bed® (b,c, dy
39 r3o(x) = x> — 3718 * x — 127865 a%cZd? (ac, bd, cd®)
| 40 [ rao(z) = 2 — 4600 * z — 152169 bc’d? {ac®,b,d)
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3. Proof of Theorem 2

We keep the notations in Section 2.

i)

ii)

The group cl,(c3) has 40 subgroups of order 3: (a;) 1 < ¢ < 40. Let F;
be the corresponding subfield of k), i.e.

Np,k(clp) modclf = (a; mod clf) and [F; : k] = 3.

Each field F; has 13 subfield K;,’s t = 1,...,13 such that [Kj, : k] = 3.
If H and K are subgroups of clg, the subgroup generated by H and
K is called the join of H and K and is denoted H\/ K. Note that for
every 1 <t < 13, the subgroup Cap(K;,/k) is contained in Cap(F;/k).
We claim that for every 1 < i < 40,

13
\/ Cap(K;, /k) = cl,(f).

t=1

In fact, we write Cap(K;,/k) = (al*bt2c®d™), t1,t9,t3,t4 € Z/3L
and consider the 13 by 4 matrix over Z/3Z, M;, such that ¢-th row
of M; is (t1,ts,t3,t4). In order to prove (k) it is sufficient to verify
that the rank of M; is equal to 4. We have verified on a computer
that the rank of M; is equal to 4 for all 40 subfield F;’s of k3 with
[F; : k] = 27. In Table 2 we give some extracts of our computational
results: ten arbitrary chosen fields among 40 field F;’s. For each F;,
we give 13 subfields K;, of F; and Cap(K,,/k) with 1 <t < 13. In the
column of F; we give o; a generator of N, /x(clr,) mod cl?.

The group cl,(CB) ~ C(3) x C(3) x C(3) x C(3) has 130 subgroups of
index 9. We denote by L; for 1 < j < 130 the subfields of k® such
that [L; : k] = 9. Every subfield L; contains four subfields denoted by
K;,, Kj,, Kj, and Kj,. For all 1 < j < 130, we will determine whether
Vﬁ:l Cap(K;, /k) = cl,(cs) or not. For this purpose we build the 4 by
4 matrix over Z/3Z, N;, such that u-th row of Nj is (l1,l2,13,14) if
Cap(Kj,/k) = (alrbl2clsd!4). The fact that Vi=1 Cap(K;, /k) = cl,(f)
is equivalent to the fact that det N; # 0in Z/3Z. We have veri-
fied on a computer that exactly 81 field L;’s among 130 fields satisfy
det N; # 0 in Z/3Z. In Table 3, we give some extracts of our compu-
tational results: 18 arbitrary chosen fields among 130 field L;’s. For
each subfield L;, we give four subfields K;, 1 < u < 4, Cap(Kj,/k)
and det N;. In the column of L; we give two generators of Ny, /x(clr;)
mod cl}.

This completes the proof of Theorem 2.
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Table 2
F; | subfields K;, | Cap(K;,/k) || F; | subfields K;, | Cap(K;,/k)
d K, a?b0c1d0 ac*d Ky a%bleldt
K, a®b0c0dt K, alb?crd?
Ks a?b0c0d? K a?b0c0d?
K, a'b?cPd? K1 a%v0c0¢d!t
Kg a0b1c2d° K14 O,Oblc2d2
K23 a2b102d2 K15 a1b202d2
K26 a2b101d2 K16 alblCldo
Ko7 a?b0ctd? Koy a®btctd®
Kzg albocodo K23 a2b102d2
K afb0c0(dt Koy a?b%cldo
K37 aOblcOdO Kzg aobzcld2
Kgg a0b1€1d2 K32 a0b001d2
K40 a0b102d2 K40 a0b102d2
c Ky alb??d? ac’d? Ky a?b0c0q?
K alb?c?d? K a?b?c' d?
Kll aoblcldo Kg a2b2cld2
K12 aobocodl K10 (12b062d2
K14 a0b102d2 K11 aoblcldo
K17 aleCOdO K19 a0b1c2d0
Klg a0b100d2 K21 a2b0()2d2
K21 a2b002d2 K23 a2b162d2
Kog a?blcd? Koy a?blctd?
c Ko a*blcPdo ac?d? Ka1 a%b? 02
K36 aoblcod2 K36 a0b100d2
K37 aoblcodo K39 a2b002d2
Kgg a0b101d2 K40 a0b102d2
bd* K, a%blcld? abcd K a’t’cld’
K12 aObOCOdl K2 aoblcldl
Kis a?blcld? K a2h%c0d?
Klﬁ alblcldo K7 a1b2c2d2
Kig a®bc?dl Ky a?b?ctd?
K21 a2b002d2 K14 a0b162d2
Koy ab?cld? Kis a®bl0d?
Kos alblcldo Koy a?b0c2d?
Kgs a2blcld2 K24 a0b2cld2
K3 a®h2c042 Kog a%b2cld?
Kss a0l d? Kiss a®0cdt
Kgg a0b101d2 K35 a1b200d0
Ky a’blc?d? Kag a?b0cd?
be K a0 do abed? K a’b8eldo
Kun a®btctd® Ky atb?cid?
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Table 2 (cont.)
F; | subfields K;, | Cap(K,;,/k) || F; | subfields K;, | Cap(K;,/k)
Kis a®blc2d? K a2 0d?
K5 a'b?c2d? Ky a'b?Pd?
K16 alblcldo K10 a2boc2d2
K17 albzcodo K11 (Loblcldo
K a®blc2d? Kig atblctdd
Koo alb?c2d’ Ko alb2c2d0
Koy a’b?cld? K5 a'dtcd®
Ko7 a2b%c1d? K a%h%c0d?
K29 albOCOdO K32 a0b001d2
K a%blctd? K3 a®bh%cldt
K3 a?b0c2d? Ky alblcldl
bed K, a0t 0 abc? Ko aPblcldt
K2 aoblcldl K7 a1b202d2
K, alb?c2d? Ky al%blc2do
Ky a?bcld? Ky a2b0c2d?
K13 a2blcld2 K12 aobocodl
KlS a0b100d2 K16 alblcldo
K20 aoblcldo K17 a1b2c0d0
Koy a?bOctd® Ky alb9c0d0
K29 albOCOdO K34 alblcldo
bed Kq1 a%b? 02 abc? Kss alb20d0
K34 alblcldo K36 a0b100d2
K36 (J,Oblcod2 K39 a2b002d2
Kag a®blcld? Ky a®blc?d?
Table 3
Lj Kju Cap(Kju/k:) det Nj Lj Kju Cap(Kju/k) det Nj
d K- alb?c2d? bc? | Ks a%b1c2d0
¢ Ky | a?blc3d? ad | Kia | a®lc2d?
K37 aoblcodo K30 a1b200d1
Kgg a0b101d2 2 K31 a0b2cod2 2
cd | Kig a’b2dl bc?’d | Ky a’blPdl
ab®d | Kos | a®b2cld? ad? | Kig | alblcld®
K34 alblcldo K35 alb2COd0
K37 aoblcodo 1 K36 (J,Oblcod2 0
cd Ko a?bc2d? b2 | K, a0 o dt
ab?d? | Ko a®blctdd? acd | Kqg a?b%c24?
Koy | a"b2ctd? Kis | a?bleld?
Ks7 | a®bcd0 1 Kis | a®btc2d? 0
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Table 3 (cont.)

Lj Kju Cap(K]u/k) det Nj Lj Kju Cap(K]-u/k) det Nj
ced® | Kq5 alb?cd? be? K, a®blcldt
bd | Koo alb?c2d0 acd? | K; %00t
K38 aoblcl d2 K11 G,Obl Cldo
K39 a2b002d2 -1 Kg() a1b200d1 0
cd® | K, a®bleldt bed? | K, a?b0ctd’
bd?> | Kis | a2bcld? a | Kig| a?b0c%d?
K3 a’b?cld? Ky aldtcPdo
K38 a0b101d2 1 K32 a0b001d2 0
cd® | K, aPbleld! bed? | Kg a?b?cld?
a K15 a1b202d2 ac2d2 K10 (lzl)OCQd2
K23 a2b102d2 K21 a2b002d2
K32 aobocl d2 -1 K27 a2 bocl do 0
cd® | K a’b?cld? be? K, a®blcldl
ad K23 a2b102d2 a Kg a0b102d0
K31 a0b2cod2 KlO a2b002d2
Kgg 02b062d2 -1 K17 a1b200d0 0
bed? | Ko albiOd0 d K3 a%0cld!
ac® | Ko7 |  a2b%'d0 ac | Ka3 | a?blc?d?
Kso | alb?2 Ot Kag | alb®c0d0
Ksg alh?c0do 1 K33 a%h0c0dt 0
bed? | Ko a®0c0dt d K aZbOcTdv
ac’d | Ko7 a?b%ctdd be Ky a?bletd®
Kgg a0b201d2 Kgg albocodo
K32 CLObOCl d2 -1 K38 aobl C1 d2 0
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