DOI QR코드

DOI QR Code

Validation of Ocean General Circulation Model (FMS-MOM4) in Relation with Climatological and Argo Data

  • Chang, You-Soon (Global Environment System Research Laboratory, National Institute of Meteorological Research) ;
  • Cho, Chang-Woo (Global Environment System Research Laboratory, National Institute of Meteorological Research) ;
  • Youn, Yong-Hoon (Marine Meteorology Division, Korea Meteorological Administration) ;
  • Seo, Jang-Won (Global Environment System Research Laboratory, National Institute of Meteorological Research)
  • 발행 : 2007.09.30

초록

Ocean general circulation model developed by GFDL on the basis of MOM4 of FMS are examined and evaluated in order to elucidate the global ocean status. The model employs a tripolar grid system to resolve the Arctic Ocean without polar filtering. The meridional resolution gradually increases from $1/3^{\circ}$ at the equator to $1^{\circ}$ at $30^{\circ}N(S)$. Other horizontal grids have the constant $1^{\circ}$ and vertical grids with 50 levels. The ocean is also coupled to the GFDL sea ice model. It considers tidal effects along with fresh water and chlorophyll concentration. This model is integrated for a 100 year duration with 96 cpu forced by German OMIP and CORE dataset. Levitus, WOA01 climatology, serial CTD observations, WOCE and Argo data are all used for model validation. General features of the world ocean circulation are well simulated except for the western boundary and coastal region where strong advection or fresh water flux are dominant. However, we can find that information concerning chlorophyll and sea ice, newly applied to MOM4 as surface boundary condition, can be used to reduce a model bias near the equatorial and North Pacific ocean.

키워드

참고문헌

  1. Beckmann, A and Doscher, R., 1997, A method for improved representation of dense water spreading over topography in geopotential coordinate models, Journal of Physical Oceanography, 27, 581-591 https://doi.org/10.1175/1520-0485(1997)027<0581:AMFIRO>2.0.CO;2
  2. Bryan, K. and Lewis, L.J., 1979, A water mass model of the world ocean, Journal of Geophysical Research, 84, 2503-2517 https://doi.org/10.1029/JC084iC05p02503
  3. Chang, Y.-S., Cho, C.-W., and Youn, Y.-H., 2005, Redistribution of subsurface water mass in the Pacific Ocean simulated by an ocean general circulation model. Journal of the Korean Meteorological Society, 41 (6), 1089-1100
  4. Delworth, T.L., Stouffer, R., Dixon, K., Spelman, M., Knutson, T., Broccoli, A, Kushner, P., and Wetherald, R, 2002, Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dynamics, 19, 555-574 https://doi.org/10.1007/s00382-002-0249-5
  5. Gnanadesikan, A, Dixon, K.W., Griffies, S.M., Balaji, V., Barreiro, M., Beesley, J.A., Cooke, W.F., Delworth, T.L., Gerdes, R, Harrison, M.J., Held, I.L., Hurlin, W.J., Lee, H.-C., Liang, Z., Nong, G., Pacanowski, R.C, Rosati, A, Russell, J., Samuels, B.L., Song, Q., Spelman, M.J., Stouffer, R.J., Sweeney, C.O., Vecchi, G., Winton, M., Wittenberg, A.T., Zeng, F., Zhang, R., and Dunne, J.P., 2006, GFDL's CM2 global coupled climate models. Part II: The baseline ocean simulation. Journal of Climate, 19 (5), 675-697 https://doi.org/10.1175/JCLI3630.1
  6. Griffies, S.M., Gnanadesikan, A., Dixon, K.W., Dunne, P., Gerdes, R, Harrison, M.J., Rosati, A., Russell J.L., Samuels, B.L., Spelman, M.J., Winton, M., and Zhang, R., 2005, Formulation of an ocean model for global climate simulations. Ocean Science, 1,45-79 https://doi.org/10.5194/os-1-45-2005
  7. Han, Y.-J., 1984, A numerical world ocean general circulation model. Part II. A baroclinic experiment. Dynamics of Atmosphere and Oceans, 8, 444-480
  8. Holloway, P., 2001, A regional model of the semidiurnal internal tide on the Australian North West shelf. Journal of Geophysical Research, 106, 19625-19638 https://doi.org/10.1029/2000JC000675
  9. Hosoda, S. and Minato, S., 2003, Objective analysis with Argo float and TRITON buoy data for temperature and salinity fields in the Pacific Ocean. Report of Japan Marine Science and Technology Center, 48, 67-83
  10. Hundsdorfer, W and Trompert, R., 1994, Method of lines and direct discretization: A comparison for linear advection. Applied Numerical Mathematics, 469-490
  11. Large, W.G., McWilliams, J.C., and Doney, S.C., 1994, Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32, 363-403 https://doi.org/10.1029/94RG01872
  12. Large, W and Yeager, S., 2004, Diurnal to decadal global forcing for ocean and sea-ice models: The data set and flux climatologies. NCAR. Technical Note: NCARfTN460+STR. CGD Division of the National Center for Atmospheric Research
  13. Latif, M., Anderson, D., Bamett, T., Cane M., Kleeman, R., Leetmaa, A., O'Brien, J., Rosati, A., and Schneider, E., 1998, A review of the predictability and prediction of ENSO. Journal of Geophysical Research, 103, 14375-14393 https://doi.org/10.1029/97JC03413
  14. Lee, H.-C., Rosati, A., and Spelman, M., 2006, Barotropic tidal mixing effects in a coupled climate model: Oceanic conditions in the Northern Atlantic. Ocean modeling, 11, 464-477 https://doi.org/10.1016/j.ocemod.2005.03.003
  15. Lynch, D.R., Ip, J.T.C., Naimie, C.E., and Wener, F.E., 1996, Comperhensiver coastal circulation model with application to the Gulf of Maine. Continental shelf Research, 16, 875-906 https://doi.org/10.1016/0278-4343(95)00028-3
  16. Meteorological Research Institute (METRI), 2003, A study on the monitoring of the global ocean variability with ARGO program (II). MR030M10, 322 p
  17. Murray, R.J., 1996, Explicit generation of orthogonal grids for ocean models. Journal of Computational Physics, 126, 251-273 https://doi.org/10.1006/jcph.1996.0136
  18. Murtugudde, R., Beauchamp, J., McClain, C.R., Lewis, M., and Busalacchi, A.J., 2002, Effects of penetrative radiation on the upper tropical ocean circulation. Journal of Climate, 15, 470-486 https://doi.org/10.1175/1520-0442(2002)015<0470:EOPROT>2.0.CO;2
  19. Nakamoto, S., Prasanna Kumar, S., Oberhuber, J., Muneyama, K., and Frouin, R., 2000, Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model. Geophysical Research Letter, 27, 747-750 https://doi.org/10.1029/1999GL002371
  20. NOAA, 1988, Data announcement 88-MGG-02, Digital relief of the surface of the earth. NOAA, National Geophysical Data Center Boulder, Colorado
  21. Roske, F., 2006, A global heat and freshwater forcing dataset for ocean models. Ocean Modelling, 11, 235-297 https://doi.org/10.1016/j.ocemod.2004.12.005
  22. Schneider, E., DeWitt, D., Rosati, A., Kirtman, B., Link, J., and Tribbia, J., 2003, Retrospective ENSO forecasts: sensitivity to atmospheric model and ocean resolution. Monthly Weather Review, 131, 3038-3060 https://doi.org/10.1175/1520-0493(2003)131<3038:REFSTA>2.0.CO;2
  23. Siedler G, Church. J., and Gould J., 2001, Ocean circulation and climate: Observing and modeling the global ocean. Academic press, San Diego, CA, USA, 715 p
  24. Smith, WH.F. and Sandwell, D.T, 1997, Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1957-1962
  25. Stouffer, R.J., Broccoli, A.J., Delworth, T.L., Dixon, K.W, Gudgel, R., HELD, I., Hemler, R., Knutson, T, LEE, H.-C., Schwarzkopf, M.D., Soden, B., Spelman, M.J., Winton, M., and Zeng, F., 2006, GFDL's CM2 global coupled climate models. Part IV: Idealized climate response. Journal of Climate, 19 (5), 723-740 https://doi.org/10.1175/JCLI3632.1
  26. Sweby, P., 1984, High-resolution schemes using flux limiters for hyperbolic conservation-laws. SIAM Journal of Numerical Analysis, 21, 995-1011 https://doi.org/10.1137/0721062
  27. Sweeney, C., Gnanadesikan, A., Griffies, S.M., Harrison, M., Rosati, A., and Samuels, B., 2005, Impacts of shortwvae penetration depth on large-scale ocean circulation and heat transport. Journal of Physical Oceanography, 35, 1103-1119 https://doi.org/10.1175/JPO2740.1
  28. Werner, S.R., Beardsley, R.C., Lentz, S.T., Hebert, D.L., and Oakey, N.S., 2003, Observations and modeling of the tidal bottom boundary layer on the southern flank of Georges Bank. Journal of Geophysical Research, 108 (C 11), 8005. doi: 10.1029/2001JC00I271
  29. Wittenberg, A., Rosati, A., Lau, G, and Ploshay, J., 2006, GFDL's CM2 global coupled climate models. Part III: Tropical pacific climate and ENSO. Journal of Climate, 19 (5), 698-722 https://doi.org/10.1175/JCLI3631.1
  30. Wong, A.P.S., Johnson, G.C., and Owens, W.B., 2003, Delayed-mode calibration of autonomous CTD profiling float salinity data by $\theta$-S climatology. Journal of Atmosphere and Oceanic Technology, 20, 308-318 https://doi.org/10.1175/1520-0426(2003)020<0308:DMCOAC>2.0.CO;2
  31. Wyrtki, K., and Kilonsky, B., 1984, Mean water and current structure during the Hawaii-to- Tahiti shuttle experiment. Journal of Physical Oceanography, 14,242-254 https://doi.org/10.1175/1520-0485(1984)014<0242:MWACSD>2.0.CO;2
  32. Youn, Y.-H., Lee, H., Chang, Y.-S., and Thadathil, P., 2005, Validation of salinity data from ARGO floats: Comparison between the older ARGO floats and that of later deployments. Journal of the Korean Earth Science Society, 26 (2), 129-136

피인용 문헌

  1. Observed El Niño SSTA Development and the Effects of Easterly and Westerly Wind Events in 2014/15 vol.30, pp.4, 2017, https://doi.org/10.1175/JCLI-D-16-0385.1