Comparison of Marine Insolation Estimating Methods in the Adriatic Sea

  • Byun, Do-Seong (Ocean Research Laboratory, National Oceanographic Research Institute) ;
  • Pinardi, Nadia (Alma Mater Studiorum Universita di Bologna, Centro Interdipartimentable per la Ricerca sulle Scienze Ambientali, Via S. Alberto, Italy)
  • Published : 2007.12.31

Abstract

We compare insolation results calculated from two well-known empirical formulas (Socket and Beaudry's SB73 formula and the original Smithsonian (SMS) formula) and a radiative transfer model using input data predicted from meteorological weather-forecast models, and review the accuracy of each method. Comparison of annual mean daily irradiance values for clear-sky conditions between the two formulas shows that, relative to the SMS, the SB73 underestimates spring values by 9 W $m^{-2}$ in the northern Adriatic Sea, although overall there is a good agreement between the annual results calculated with the two formulas. We also elucidate the effect on SMS of changing the 'Sun-Earth distance factor (f)', a parameter which is commonly assumed to be constant in the oceanographic context. Results show that the mean daily solar radiation for clear-sky conditions in the northern Adriatic Sea can be reduced as much as 12 W $m^{-2}$ during summer due to a decrease in the f value. Lastly, surface irradiance values calculated from a simple radiative transfer model (GM02) for clear-sky conditions are compared to those from SB73 and SMS. Comparison with iu situ data in the northern Adriatic Sea shows that the GM02 estimate gives more realistic surface irradiance values than SMS, particularly during summer. Additionally, irradiance values calculated by GM02 using the buoy meteorological fields and ECMWF (The European Centre for Medium Range Weather Forecasts) meteorological data show the suitability of the ECMWF data usage. Through tests of GM02 sensitivity to key regional meteorological factors, we explore the main factors contributing significantly to a reduction in summertime solar irradiance in the Adriatic Sea.

Keywords

References

  1. Almorox, J., C. Hontoria, and M. Benito. 2005. Statistical validation of day length definitions for estimation of global solar radiation in Toledo, Spain. Energ. Convers. Manage., 46, 1465-1471 https://doi.org/10.1016/j.enconman.2004.07.007
  2. Angelucci, M.G., N. Pinardi, and S. Castellari. 1998. Air-sea fluxes from operational analyses fields: intercomparison between ECMWF and NCEP analyses over the Mediterranean Area. Phys. Chem. Earth, 23, 569-574 https://doi.org/10.1016/S0079-1946(98)00071-8
  3. Bird, R.E. and C. Riordan. 1986. Simple solar spectral model for direct and diffuse irradiance on horizontal and titled planes at the earth's surface for cloudless atmospheres. J. Appl. Meteorol., 25, 87-97 https://doi.org/10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2
  4. Blanco-Muriel, M., D.C. Alarcon-Padilla, T. Lopez-Moratalla, and M. Lara-Coira. 2001. Computing the solar vector. Solar Energy, 70, 431-441 https://doi.org/10.1016/S0038-092X(00)00156-0
  5. Bretagnon, P. and G. Francou. 1988. Planetary theories in rectangular and spherical variables - VSOP87 solutions, Astron. Astroph., 202, 309-315
  6. Byun, D.-S. and Y.-K. Cho. 2006. Estimation of the PAR irradiance ratio and its variability under clear-sky conditions at Ieodo in the East China Sea, Ocean Science Journal, 41, 235-244 https://doi.org/10.1007/BF03020627
  7. Cardin, V. and M. Gacic. 2003. Long-term heat flux variability and winter convection in the Adriatic Sea. J. Geophys. Res., 108, C9, 8103, doi:10.1029/2002JC001645
  8. Castellari, S., N. Pinardi, and K. Leaman. 1998. A model study of air-sea interactions in the Mediterranean Sea. J. Mar. Syst., 18, 89-114 https://doi.org/10.1016/S0924-7963(98)90007-0
  9. Castellari, S., N. Pinardi, and K. Leaman. 2000. Simulation of water mass formation processes in the Mediterranean Sea: Influence of the time frequency of the atmospheric forcing. J. Geophys. Res., 105, 24157-24181 https://doi.org/10.1029/2000JC900055
  10. Chiggiato, J., M. Zavatarelli, S. Castellari, and M. Deserti. 2005. Interannual variability of surface hear fluxes in the Adriatic Sea in the period 1998-2001 and comparison with observations. Sci. Total Environ., 353, 89-102 https://doi.org/10.1016/j.scitotenv.2005.09.031
  11. Cooper, P.I. 1969. The absorption of solar radiation in solar stills. Solar Energy, 12, 333-346 https://doi.org/10.1016/0038-092X(69)90047-4
  12. Colijn, F. and G. C. Cadee. 2003. Is phytoplankton growth in the Wadden Sea light or nitrogen limited? J. Sea Res., 49, 83-93 https://doi.org/10.1016/S1385-1101(03)00002-9
  13. Fouquart, Y., B. Bonnel, G. Brogniez, J.C. Buriez, L. Smith, J.J. Morcrette, and A. Cerf. 1987. Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part II: Broadband Radiative Characteristics of the Aerosols and Vertical Radiative Flux Divergence. J. Appl. Meteorol., 26, 38-52 https://doi.org/10.1175/1520-0450(1987)026<0038:OOSARO>2.0.CO;2
  14. Frouin, R., D.W. Lingner, C. Gautier, K.S. Baker, and R.C. Smith. 1989. A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface. J. Geophys. Res., 94, 9731-9742 https://doi.org/10.1029/JC094iC07p09731
  15. Frouin, R., M. Schwindling, and P.-Y. Deschamps. 1996. Spectral reflectance of sea foam in the visible and near-infrared: In site measurements and remote sensing implications. J. Geophys. Res., 101, 14361-14371 https://doi.org/10.1029/96JC00629
  16. Garrett, C., R. Outerbridge, and K. Thompson. 1993. Interannual variability in Mediterranean Heat and Buoyancy Fluxes. J. Climate, 6, 900-910 https://doi.org/10.1175/1520-0442(1993)006<0900:IVIMHA>2.0.CO;2
  17. Gilman, C. and C. Garrett. 1994. Heat flux parameterizations for the Mediterranean Sea: The role of atmospheric aerosols and constraints from the water budget. J. Geophys. Res., 99, 5119-5134 https://doi.org/10.1029/93JC03069
  18. Gordon, H.R., D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans, and W. W. Broenkow. 1983. Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates. Appl. Opt., 22, 20-36 https://doi.org/10.1364/AO.22.000020
  19. Gregg, W.W. and K.L. Carder. 1990. A simple spectral solar irradiance model for cloudless maritime atmospheres. Limnol. Oceanogr., 35, 1657-1675 https://doi.org/10.4319/lo.1990.35.8.1657
  20. Gregg, W.W. 2002. A coupled ocean-atmosphere radiative model for global ocean biogeochemical models. Technical report series on global modeling and data assimilation 22, ed. by M. Suarez, NASA/TM---2002-10460, 19 p
  21. Gueymard, C. 1994. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and Northern United States. Solar Energy, 53, 57-71 https://doi.org/10.1016/S0038-092X(94)90606-8
  22. Gueymard, C. 2001. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Solar Energy, 71, 325-346 https://doi.org/10.1016/S0038-092X(01)00054-8
  23. Gueymard, C. 2004. The sun's total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy, 76, 423-453 https://doi.org/10.1016/j.solener.2003.08.039
  24. Jacovides, C.P., F.S. Tymvios, D.N. Asimakopoulos, K.M. Theofilou, and S. Pashiardes. 2003. Global photosynthetically active radiation and its relationship with global solar radiation in the Eastern Mediterranean basin. Theor. Appl. Climatol., 74, 227-233 https://doi.org/10.1007/s00704-002-0685-5
  25. Justus, C.G. and M.Y. Paris. 1985. A model for solar spectral irradiance and radiance at the bottom and top of a cloudless atmosphere. J. Clim. Appl. Meteorol., 24, 193-205 https://doi.org/10.1175/1520-0450(1985)024<0193:AMFSSI>2.0.CO;2
  26. Kasten, F. and A.T. Young. 1989. Revised optical air mass tables and approximation formula. Appl. Opt., 28, 4735 https://doi.org/10.1364/AO.28.004735
  27. Leckner, B. 1978. The spectral distribution of solar radiation at the earth's surface - Elements of a model. Solar Energy, 20, 143-150 https://doi.org/10.1016/0038-092X(78)90187-1
  28. List, R.J. 1958. Smithsonian Meteorological Tables. Smithsonian Inst., Washington, D.C. 527 p
  29. Liu, C.-C., K.L. Carder, R.L. Miller, and J.E. Ivey. 2002. Fast and accurate model of underwater scalar irradiance. Appl. Opt., 41, 4962-4974 https://doi.org/10.1364/AO.41.004962
  30. Maggiore, A., M. Zavatarelli, M.G. Angelucci, and N. Pinardi. 1998. Surface heat and water fluxes in the Adriatic Sea: Seasonal and interannual variability. Phys. Chem. Earth, 23, 561-567 https://doi.org/10.1016/S0079-1946(98)00070-6
  31. Michalsky, J.J. 1988. The Astronomical almanac's algorithm for approximate solar position (1950-2050). Solar Energy, 40, 227-235 https://doi.org/10.1016/0038-092X(88)90045-X
  32. Okulov, O., H. Ohvril, and R. Kivi. 2002. Atmospheric precipitable water in Estonia, 1990-2001. Bor. Env. Res., 7, 291-300
  33. Paltridge, G. W. and C. M. R. Platt. 1976. Radiative Processes in Meteorology and Climatology. Elsevier Sci. 318 p
  34. Parsons, T.R., M. Takahashi, and B. Hargrave. 1984. Biological oceanographic processes. Pergamon, Oxford. 330 p
  35. Pinardi, N., I. Allen, E. Demirov, P. De Mey, G. Korres, A. Lascaratos, P.-Y. Le Traon, C. Maillard, and C. Tziavos. 2003. The Mediterranean ocean forecasting system: First phase of implementation (1998-2001). Ann. Geophys., 21, 3-20
  36. Reed, R.K. 1977. On estimating insolation over the ocean. J. Phys. Oceanogr., 7, 482-485 https://doi.org/10.1175/1520-0485(1977)007<0482:OEIOTO>2.0.CO;2
  37. Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle. 1998. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere. Bull. Am. Meteorol. Soc., 79, 2101-2114 https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
  38. Rosati, A. and K. Miyakoda. 1988. A general circulation model for upper ocean simulation. J. Phys. Oceanogr., 18, 1601-1626 https://doi.org/10.1175/1520-0485(1988)018<1601:AGCMFU>2.0.CO;2
  39. Schiano, M.E. 1996. Insolation over the western Mediterranean Sea: A comparison of direct measurements and Reed's formula. J. Geophys. Res., 101, 3831-3838 https://doi.org/10.1029/95JC03340
  40. Seckel, G.R. and F.H. Beaudry. 1973. The radiation from sun and sky over the North Pacific Ocean (abstract). EOS Trans, AGU, 54, 1114
  41. Simpson, J.J. and C.A. Paulson. 1979. Mid-ocean observations of atmospheric radiation, Q.J.R. Meteor. Soc., 105, 487-502 https://doi.org/10.1002/qj.49710544412
  42. Spencer, J.W. 1971. Fourier series representation of the position of the Sun. Search 2(5), 172
  43. Tetens, O. 1930. Uber einige meteorologische Begriffe. Z. Geophys., 6, 297-309
  44. Tragou, E. and A. Lascaratos. 2003. Role of aerosols on the Mediterranean solar radiation. J. Geophys. Res., 108, C2, 3025, doi: 10.1029/2001JC001258
  45. Van Heuklon, T.K. 1979. Estimating atmospheric ozone for solar radiation models. Solar Energy, 22, 63-68 https://doi.org/10.1016/0038-092X(79)90060-4
  46. Wang, X.H. 2005. Circulation and heat budget of the northern Adriatic Sea (Italy) due to a Bora event in January 2001: A numerical model study. Ocean Modelling, 10, 253-271 https://doi.org/10.1016/j.ocemod.2004.09.001
  47. Wen, G., R.F. Cahalan, and B.N. Holben. 2003. Limitations of ground-based solar irradiance estimates due to atmospheric variations. J. Geophys. Res., 108, D14, 4400, doi:10.1029/2003JD003431