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EQUIVARIANT SEMIALGEBRAIC LOCAL-TRIVIALITY

DAE HEUI PARK

ABSTRACT. We prove the equivariant version of the semialgebraic local-
triviality of semialgebraic maps.

1. Introduction

In this paper we generalize the semialgebraic local-triviality of semialgebraic
maps.

A semialgebraic set is a subset of some R™ defined by finite number of poly-
nomial equations and inequalities, and a semialgebraic map between semialge-
braic sets is a continuous map whose graph is a semialgebraic set. In this paper
we only consider the semialgebraic sets in R™ for some n equipped with the
subspace topology induced by the usual topology of R™, and all semialgebraic
maps are continuous.

In 1980 R. M. Hardt [5] proved the semialgebraic local-triviality of semial-
gebraic maps as follows.

Proposition 1.1 ([5], [1, Theorem 9.3.2]). Let M, N be two semialgebraic
sets and f: M — N a semialgebraic map. Then there exists a finite decom-
position of N into semialgebraic subsets {B;} such that for each B; there ez-
ists a semialgebraic homeomorphism ;: f~Y(B;) — B; x f~1(b;) such that
Flg-1(B;) = Ds 0 @i, where b; € B; and p;: By x f~(b;) — B; is the projection.

(B;) ————=— B; x f~(by)

\/

The purpose of this paper is to prove the equivariant version of Proposi-
tion 1.1. For this we need some basic definitions. A semialgebraic set G in
some R™ is called a semialgebraic group if it is a topological group whose mul-
tiplication and inversion are semialgebraic maps. A semialgebraic G-set means
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a semialgebraic set M in some R* with a semialgebraic action §: G x M — M
of G. A map f: M — N between semialgebraic G-sets is said to be a semial-
gebraic G-map if it is a continuous G-map and a semialgebraic map between
ordinary semialgebraic sets M and N, i.e., its graph is a semialgebraic subset
of M x N.

The main result of this paper is as follows.

Theorem 1.2. Let G be a compact semialgebraic group. Let M, N be semi-
algebraic G-sets and f: M — N a semialgebraic G-map. Then there exists
o finite decomposition of N into semialgebraic G-subsets {T;} such that for
each T; there exist semialgebraic G-homeomorphisms ;. T; — B; X G(y;) and
(02X f_l(Ti) — Bin—l(G(y,‘)) such that wio(f|f*1(Ti)) = (idBi Xf‘f“l(G(yi)))o
i, where y; € T; and B; is a semialgebraic set with the trivial G-action.

FUT) ——2— Bi x f7H(G(w))

fl lidsi xf
T;

z_ B; x G(y;)

Note f~Y(G(y;)) = G(f~*(%:)). In case G is trivial, Theorem 1.2 is same to
Proposition 1.1 with the identification T; = B; x {y;} = B; by ;.

To prove Theorem 1.2 we need the following resuit which is the equivariant
semialgebraic local-triviality of a semialgebraic G-invariant map.

Theorem 1.3. Let G be a compact semialgebraic group and M a semialge-
braic G-set. Let N be a semialgebraic set and f: M — N a semialgebraic
G-invariant map. Then there exists a finite decomposition of N into semi-
algebraic subsets {B;} such that for each B; there exists a semialgebraic G-
homeomorphism ¢;: f~1(B;) — B;i x f7Y(b;) such that fls-1(p,) = pi © ¥,
where b; € B; and p;: B; x f~1(b;) — B; is the projection.

FHBy) 2 By x 71 (by)
\ /

This paper is organized as follows. In Section 2 we discuss some background
materials on semialgebraic G-sets. In Section 3 we prove Theorem 1.3. Sec-
tion 4 is devoted to the proof of Theorem 1.2.

2. Some background materials on semialgebraic G-sets

In this section we discuss some background materials on semialgebraic G-
sets. It is easy to see that the composition of two semialgebraic maps is also
semialgebraic. Moreover, the image and the preimage of a semialgebraic subset
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by a semialgebraic map are semialgebraic. See [1] for more detailed arguments
on semialgebraic sets and maps. We state the following elementary proposition
because it will be used several times in this paper.

Proposition 2.1 ([8, Lemma 2.4]). Let A, B, and C be semialgebraic sets,
and let f: A— B and g: A — C be semialgebraic. Assume [ is surjective. If
h: B — C is a continuous map such that ho f = g, then h is a semialgebraic
map.

A

fl\

B———¢C

If f: M — N is a semialgebraic map which is a homeomorphism, then
Proposition 2.1 implies that the inverse f~! is also semialgebraic.

H. Hironaka [6] proved the existence of semialgebraic triangulation for semi-
algebraic sets as follows: Let M be a semialgebraic set and M, ..., My semi-
algebraic subsets of M. Then there exist a finite open simplicial complex K
and a semialgebraic homeomorphism 7: |K| — M such that each M; is a finite
union of some of the 7(g), where ¢ is an open simplex of K. In this case, set

{B;} ={r(c) | o is an open simplex of K}.
Then we obtain the following proposition.

Proposition 2.2. Let M be a semialgebraic set and M, ..., My semialgebraic
subsets of M. Then there exists a finite decomposition of M into semialgebraic
subsets By, Bo, ..., B, such that

(1) each M; is a finite union of some B;;
(2)M:.31UBQU"'UBn,'
(3) B,NBy =@ if it £,

In this case {B;} is called compatible with {M;}.

Now we study some elementary theory of semialgebraic transformation gr-
oups. The following is one of the fundamental facts in the theory of semialge-
braic transformation groups.

Proposition 2.3 ([3]). Let G be a compact semialgebraic group and M a
semialgebraic G-set. Then the orbit space M/G exists as a semialgebraic set
such that the orbit map m: M — M /G is semialgebraic.

As an immediate consequence of Proposition 2.3, if G is a semialgebraic
group and H a compact semialgebraic subgroup of G, the homogeneous space
G/H is a semialgebraic G-set. On the other hand, for a semialgebraic G-set M
the orbit G(z) of x € M is clearly a semialgebraic G-set. Moreover, the isotropy
subgroup G is also a closed semialgebraic subgroup of G for all z € M. When
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G, is compact, as in the theory of Lie group actions, by Proposition 2.1, we
have the natural semialgebraic G-homeomorphism:

az: G/Gy — G(z), (9Gq — g)
Note that every semialgebraic group has a Lie group structure [7].

Proposition 2.4 ({4, 9]). Let G be a compact semialgebraic group. Then every
semialgebraic G-set has only finitely many orbit types.

Let G be a compact semialgebraic group and M a semialgebraic G-set. Then
the set
MC={zeM|gc=z forall geG}

is a closed semialgebraic subset of M. Moreover, for a subgroup H of G, let
Mgy denote the subspace of points on orbits of type G/H,ie.,

M(H) ={xeM|G, =gHg_1 for some g € G}.

By the same way as in the proof of Lemma 3.3 in [8], we obtain that, for any
subgroup H of G, Mg is a semialgebraic G-subset of M. In particular, if H is
not a closed semialgebraic subgroup of G then M(y) = @ because the isotropy
subgroup G, is a closed semialgebraic subgroup of G for each z € M.

Furthermore, let H be a closed semialgebraic subgroup of a compact semi-
algebraic group G, then we can easily show that the normalizer N(H) of H is
also a closed semialgebraic subgroup of G as follows; since N(H) is a closed
subgroup of G, thus it remains to show that it is a semialgebraic subset of
G. We define ¢c: G x H — G by c(g,h) = ghg™?, then c is a semialgebraic
map. Moreover, the set ¢™1(G — H) is a semialgebraic subset of G x H. Then
N(H) = G — p(c"Y(G — H)) is also semialgebraic, where p: G x H — G is
the projection given by p(g,h) = g. Therefore N(H) is a closed semialgebraic
subgroup of G.

We conclude this section with the following observation for semialgebraic
G-sets with only one orbit type.

Proposition 2.5. Let G be a compact semialgebraic group, and M a semi-
algebraic G-set with only one orbit type G/H. Then we have the following
semzalgebraic G-homeomorphisms:

(1) a: Gxy MH 2 M, lg,z] — g(x) where N is the normalizer of H in
G.
(2) The map B: ME /N 5 M/G induced from the inclusion MH — M.

(8) v: (G/H) x ¢ M# =2 M, [gH,z] — g(z) where K = N/H.

Proof. These maps are well-known to be G-homeomorphisms, see e.g. [2,
Chater I1]. That these maps are semialgebraic follows easily from Proposi-
tions 2.1 and 2.3.

(1) The map « is a continuous homeomorphism. Thus we only need to
show that it is semialgebraic. For this, we consider the following commutative
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diagram;

Gx MH

GxyMH ——— > M

where 7' is the semialgebraic orbit map and 6| is the restriction of the semial-
gebraic G-action # on M. Since 7’ is surjective, « is semialgebraic by Propo-
sition 2.1.

(2) We only need to show that 3 is semialgebraic. For this, we consider the
following commutative diagram;

MHC— >

MF |N ———— M/G

where 7/, 7 are semialgebraic orbit maps and ¢ is the inclusion. Since 7’ is
surjective, § is semialgebraic by Proposition 2.1.

(3) We only need to show that <y is semialgebraic. For this, we consider the
following commutative diagram;

Gx MH
w'xidl
G/H x M¥ ‘l
(G/H) xx MH ———— M

where 7'/, 7" are semialgebraic orbit maps and 6| is the restriction of the semi-
algebraic G-action  on M. Since 7" o(n’ x id) is surjective and semialgebraic,
~ is semialgebraic by Proposition 2.1. a

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3. For this we need the equivariant
semialgebraic local-triviality of the orbit map 7: M — M /G for a semialgebraic
G-set.

Lemma 3.1. Let G be a compact semialgebraic group, M a semialgebraic (-set
and let m: M — M/G be the semialgebraic orbit map. Then there exists a finite
decomposition of M /G into semialgebraic subsets By, ..., B such that for each
B; there exists a semialgebraic G-homeomorphism @;: 7~ 1(B;) — B; x 77 1(b;)
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such that 7|,~1(p,) = p; © @i, where b; € B; and p;: B; x 7 1(b;) — B; is the
projection.

Y B) —— 2> B, x n (k)

N

Proof. We first prove the case when M has only one orbit type, say G/H. By
Proposition 2.5, we have semialgebraic G-homeomorphisms o: Gxy M7 — M
and B: (M")/N — M/G where N is the normalizer of H. Let m,: MH —
M¥ /N be the semialgebraic orbit map. Apply Proposition 1.1 to m,, so
that there exists a finite decomposition of (M#)/N into semialgebraic sub-
sets {Ajy,...,Ax} such that for each A; there exists a semialgebraic home-
omorphism ¢;: m;}(A4;) — A; x N/H such that 7r*|7r*_1(Ai) = p; o ¢; where
pi: Ai x N/H — A; is the projection. Note N/H = 7 1(a;) for a; € A;. Set
C; = ¢;7 (A x {eH}) C 771 (A)).

A; X BH} = C.

)

A xN/H<————— m 1(A;)C MHGC M

N |

(MH)/N —— > M/C

Then it is easy to see that NC; = 7 (A;). The subgroup N acts on A; x N/H
and 7, !(A;) but the homeomorphism ¢;: 77 1(A;) — A; x N/H is not neces-
sarily N-equivariant. Therefore we need to define a new map v;: N/H x 4; —
NC; = n;7Y(A;) by vi(gH, z) = gy:(x), where 1;: A; — C; is a semialgebraic
homeomorphism defined by ;(z) = ¢; ' (z,eH). We claim that ~; is a semial-
gebraic N-homeomorphism. Consider the following commutative diagram

Nx A —2% . Nxc
w’xidl 191
N/H X Ai —-T-———i’ NCZ

where 7' is the quotient map and 6| is the restriction of the action map
f: G x M — M. Since all other maps in the above diagram are surjec-
tive and semialgebraic, -; is surjective and semialgebraic by Proposition 2.1.
Suppose v;(gH,z) = ~i(¢'H,z') for (gH,z), (¢'H,z') € N/H x A;. Then
g¥i(z) = ¢'vi(z’) implies that ¥;(z) = g~ 'g'¢(z’). Hence v;(z) and v;(z’)
are contained in the same N-orbit in M which implies that z = z’ in A;.
Therefore v;(z) = g~ *¢g'ts(z) and thus g~'g’ € Ny, (z) = H. Hence gH = g'H
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which implies that ~; is injective. This completes the proof of the claim. Clearly
7; induces a semialgebraic N-homeomorphism v,: 7, 1(A;) = NC; — A;xN/H
by v} = coy, 1 where c: N/H x A; — A; x N/H is a semialgebraic map defined
by c(gH,z) = (z,gH). And the following diagram commutes.

(A =

. NC;

\ /

Now let us continue our original proof. Let B; = 3(A;) C M/G. Then {B;}
-1

is a finite semialgebraic decomposition of M/G and 7;1(4;) = (==1(B;))".
Hence we have a semialgebraic G-homeomorphism

o T UBY =Gy (BT (o)
_ G xnnol(A4y)
~ G xy (N/H x A;) (o idxyv))
g(C; XNN/H) XBi
~G/H x B; 2 B; x G/H

L A xN/H
Ay

such that 7|,~1(p,) = pi o p; where p;: B; x G/H — B; is the projection. This
completes the proof of the case when M has only one orbit type.

We now prove the general case. By Proposition 2.4, M has finite orbit
types, say G/Hy,...,G/H;. Then for each ¢ = 1,...,l, M(y,) has only one
orbit type. Hence, by the previous case, the restriction 7|: Mg,y — M,)/G
has the equivariant semialgebraic local-triviality. Since M (resp. M/G) is the
disjoint union of Mg,y (resp. My,)/G), m: M — M/G has obviously the
equivariant semialgebraic local-triviality. O

As an application of Lemma 3.1, we prove Theorem 1.3 as follows.

Proof of Theorem 1.8. By Lemma 3.1, there exists a finite decomposition of
M/G into semialgebraic subsets Aj,...,A; such that for each A; there exists
a semialgebraic G-homeomorphism v;: 77 1(A4;) — A; x 77 '(a;) such that
Tlr-1(4;) = gj © ¥; where a; € Aj, m: M — M/G is the semialgebraic orbit
map and g;: A; X 77 (a;) — A; is the projection.

On the other hand, since f: M — N is a semialgebraic G-invariant map, it
induces a semialgebraic map f: M/G — N by Proposition 2.1. Apply Propo-
sition 1.1 to f, then there exists a finite decomposition of N into semialgebraic
subsets C1,. .., C,, such that for each Cj there exists a semialgebraic homeo-
morphism ¢5: f~1(Ci) — Cx x f~1(ck) such that f_l[f—l(ck) = ri o ¢ where
cr € Cp and ri: Cp X f‘l(ck) — CY is the projection.

By Proposition 2.2, there exists a finite decomposition of N into semialge-
braic subsets {B;} which is compatible with {Cx} U {f(A;)}. We claim that
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{B:} is the desired finite decomposition of N. Notice that each B; is either
BN f(M/G)= @ or B; C f(M/G) = f(M) by the compatibility of {B;}.

In case B; N f(M/G) = @, f1(B;) = f~(b;)) = @, and hence f~1(B;) =
@ = B; x f71(bs)..

In case B; C f(M/G), there exist Cy(;y and Ay such that B; C Cyy,
B; C f(A;()) by the compatibility of {B;}. Thus we obtain a semialgebraic
G-homeomorphism

pi: f‘l(Bi) = 7r'l(f’l(Bz')) f’ FH(Bi) x 77} (a )
=, f mYa) = . =1(p.
¢k(,)><1d x f71(bs) x (a;) dwh B; x f~H{(bi)
where b; € B;, a; € f‘ (b;) and h: f~1(b;) x 771(a;) — F71(b;) is the semi-
algebraic G-homeomorphism which is the restriction of 1/)].—(11.). Note f~1(b;) =

7~ L(f~1(b;)). It is easy to check that the diagram

z———————>B><f (b;)

\/

commutes where p; is the projection. This completes the proof of Theorem 1.3.
O

4. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2.

Let mpr: M — M/G and ny: N — N/G denote the semialgebraic or-
bit maps. Apply Theorem 1.3 to mys, then we have a finite decomposition
of M/G into semialgebraic subsets {A;} such that for each A; there exists
a semialgebraic G-homeomorphism ¢;: 75/ (4;) — A; x 737 (a;) such that
TM|r=10a,) = ¢;0¢; Wherea; € A; and g;: A; xmy (a;) — Aj is the projection.
Similarly, there exists a finite decomposition of N/G into semialgebraic subsets
{Ci} such that for each C} there exists a semialgebraic G-homeomorphism
P wlt,l(Ck) — Cf % 7r;,1 (ck) such that WN!ﬁ;{l(Ck) = ri 0 ¢}, where ¢ € Cg
and r: Cr X 7r;,1(ck) — (Y} is the projection. Moreover, since f: M — N is
a semialgebraic G-map, it induces a semialgebraic map f: M/G — N/G. By
Proposition 1.1, there exists a finite decomposition of N/G into semialgebraic
subsets {D;} such that for each D; there exists a semialgebraic homeomorphism
xi: f7YD;) = Dy x f~1(d;) such that f_|f—1(Dl) = 3; 0 x; where d; € D; and
s;: Dy x f~1(d;) — Dy is the projection.

By Proposition 2.2, there exists a finite decomposition of N/G into semial-
gebraic subsets {B;} Wthh is compatible with {f (A7)} U{Cx} U {D;}. Notice
that each B; is either B;N f(M/G) = @ or B; C f(M/G) =N (f(M)) by the
compatibility of {B;}.
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In case B; N f(M/G) = @, ny'(b;) = @ for all b; € B;. Set T} = ' (B;),
then f~YT;) = @ and f~}(G(y;)) = @ for all y; € T Hence f~YT;) = @ =
B, x f~1(G(w). _

In case B; C f(M/G), there exist Aj(;), Cry and Dy, such that B; C
F(Aj4)), Bi € Crsy and B; C Dy;y by the compatibility of {B;}. Put T; =
75 (B;), then T; is a semialgebraic G-subset of N which is semialgebraically
G-homeomorphic to B; x my' (b;) by ¢;€(i). Put

i = Yiyl: To = 3 (Bi) = By x my* (by)
where w;c(i)l denotes the restriction of w;c(t)
On the other hand, f~'(T;) = = T (FUBY)) is semlalgebralcally G-homeo-
morphic to f_l(Bi) X W;{l(a]«(l ) by ®;(:) where a;(;) € f (b ) C Ajiy. Thus
we have a semialgebraic G-homeomorphism

pir fTHT) =y (FH(BY) _<;|f N(Bi) % myf (a5

o 5 B =1 =1(p.
g B 00 i age) 3 Box SR 6)
where h: F=1(b;) x 737 (aji) — Tag (F1(b:)) = F7H (gt (b:)) is a semialge-
braic G-homeomorphism which is the restriction of d)j,_é).

It is easy to check that the diagram

R

commutes where f|: f71(7y'(b;)) — wy'(b;) is the restriction of f. Note
Ty (8:) = G(y;) for all y; € wyt(b;) C T;. This completes the proof of Theo-
rem 1.2.
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