EQUIVARIANT SEMIALGEBRAIC LOCAL-TRIVIALITY

DAE HEUI PARK

ABSTRACT. We prove the equivariant version of the semialgebraic local-triviality of semialgebraic maps.

1. Introduction

In this paper we generalize the semialgebraic local-triviality of semialgebraic maps.

A semialgebraic set is a subset of some \mathbb{R}^n defined by finite number of polynomial equations and inequalities, and a semialgebraic map between semialgebraic sets is a continuous map whose graph is a semialgebraic set. In this paper we only consider the semialgebraic sets in \mathbb{R}^n for some n equipped with the subspace topology induced by the usual topology of \mathbb{R}^n , and all semialgebraic maps are continuous.

In 1980 R. M. Hardt [5] proved the semialgebraic local-triviality of semialgebraic maps as follows.

Proposition 1.1 ([5], [1, Theorem 9.3.2]). Let M, N be two semialgebraic sets and $f: M \to N$ a semialgebraic map. Then there exists a finite decomposition of N into semialgebraic subsets $\{B_i\}$ such that for each B_i there exists a semialgebraic homeomorphism $\varphi_i \colon f^{-1}(B_i) \to B_i \times f^{-1}(b_i)$ such that $f|_{f^{-1}(B_i)} = p_i \circ \varphi_i$, where $b_i \in B_i$ and $p_i \colon B_i \times f^{-1}(b_i) \to B_i$ is the projection.

The purpose of this paper is to prove the equivariant version of Proposition 1.1. For this we need some basic definitions. A semialgebraic set G in some \mathbb{R}^m is called a *semialgebraic group* if it is a topological group whose multiplication and inversion are semialgebraic maps. A *semialgebraic G-set* means

Received October 11, 2005.

²⁰⁰⁰ Mathematics Subject Classification. 57S99, 14P10, 57Q10.

Key words and phrases. transformation group, semialgebraic set, local-triviality.

This study was financially supported by research fund of Chonnam National University in 2003.

a semialgebraic set M in some \mathbb{R}^k with a semialgebraic action $\theta \colon G \times M \to M$ of G. A map $f \colon M \to N$ between semialgebraic G-sets is said to be a semialgebraic G-map if it is a continuous G-map and a semialgebraic map between ordinary semialgebraic sets M and N, i.e., its graph is a semialgebraic subset of $M \times N$.

The main result of this paper is as follows.

Theorem 1.2. Let G be a compact semialgebraic group. Let M, N be semialgebraic G-sets and $f: M \to N$ a semialgebraic G-map. Then there exists a finite decomposition of N into semialgebraic G-subsets $\{T_i\}$ such that for each T_i there exist semialgebraic G-homeomorphisms $\psi_i: T_i \to B_i \times G(y_i)$ and $\varphi_i: f^{-1}(T_i) \to B_i \times f^{-1}(G(y_i))$ such that $\psi_i \circ (f|_{f^{-1}(T_i)}) = (\operatorname{id}_{B_i} \times f|_{f^{-1}(G(y_i))}) \circ \varphi_i$, where $y_i \in T_i$ and B_i is a semialgebraic set with the trivial G-action.

$$f^{-1}(T_i) \xrightarrow{\varphi_i} B_i \times f^{-1}(G(y_i))$$

$$f \downarrow \qquad \qquad \downarrow_{\mathrm{id}_{B_i} \times f}$$

$$T_i \xrightarrow{\varphi_i} B_i \times G(y_i)$$

Note $f^{-1}(G(y_i)) = G(f^{-1}(y_i))$. In case G is trivial, Theorem 1.2 is same to Proposition 1.1 with the identification $T_i = B_i \times \{y_i\} = B_i$ by ψ_i .

To prove Theorem 1.2 we need the following result which is the equivariant semialgebraic local-triviality of a semialgebraic G-invariant map.

Theorem 1.3. Let G be a compact semialgebraic group and M a semialgebraic G-set. Let N be a semialgebraic set and $f: M \to N$ a semialgebraic G-invariant map. Then there exists a finite decomposition of N into semialgebraic subsets $\{B_i\}$ such that for each B_i there exists a semialgebraic G-homeomorphism $\varphi_i: f^{-1}(B_i) \to B_i \times f^{-1}(b_i)$ such that $f|_{f^{-1}(B_i)} = p_i \circ \varphi_i$, where $b_i \in B_i$ and $p_i: B_i \times f^{-1}(b_i) \to B_i$ is the projection.

This paper is organized as follows. In Section 2 we discuss some background materials on semialgebraic G-sets. In Section 3 we prove Theorem 1.3. Section 4 is devoted to the proof of Theorem 1.2.

2. Some background materials on semialgebraic G-sets

In this section we discuss some background materials on semialgebraic *G*-sets. It is easy to see that the composition of two semialgebraic maps is also semialgebraic. Moreover, the image and the preimage of a semialgebraic subset

by a semialgebraic map are semialgebraic. See [1] for more detailed arguments on semialgebraic sets and maps. We state the following elementary proposition because it will be used several times in this paper.

Proposition 2.1 ([8, Lemma 2.4]). Let A, B, and C be semialgebraic sets, and let $f: A \to B$ and $g: A \to C$ be semialgebraic. Assume f is surjective. If $h: B \to C$ is a continuous map such that $h \circ f = g$, then h is a semialgebraic map.

If $f: M \to N$ is a semialgebraic map which is a homeomorphism, then Proposition 2.1 implies that the inverse f^{-1} is also semialgebraic.

H. Hironaka [6] proved the existence of semialgebraic triangulation for semialgebraic sets as follows: Let M be a semialgebraic set and M_1, \ldots, M_k semialgebraic subsets of M. Then there exist a finite open simplicial complex Kand a semialgebraic homeomorphism $\tau: |K| \to M$ such that each M_j is a finite union of some of the $\tau(\sigma)$, where σ is an open simplex of K. In this case, set

$$\{B_i\} = \{\tau(\sigma) \mid \sigma \text{ is an open simplex of } K\}.$$

Then we obtain the following proposition.

Proposition 2.2. Let M be a semialgebraic set and M_1, \ldots, M_k semialgebraic subsets of M. Then there exists a finite decomposition of M into semialgebraic subsets B_1, B_2, \ldots, B_n such that

- (1) each M_j is a finite union of some B_i ;
- $(2) M = B_1 \cup B_2 \cup \cdots \cup B_n;$
- (3) $B_i \cap B_{i'} = \varnothing \text{ if } i \neq i'.$

In this case $\{B_i\}$ is called *compatible with* $\{M_i\}$.

Now we study some elementary theory of semialgebraic transformation groups. The following is one of the fundamental facts in the theory of semialgebraic transformation groups.

Proposition 2.3 ([3]). Let G be a compact semialgebraic group and M a semialgebraic G-set. Then the orbit space M/G exists as a semialgebraic set such that the orbit map $\pi: M \to M/G$ is semialgebraic.

As an immediate consequence of Proposition 2.3, if G is a semialgebraic group and H a compact semialgebraic subgroup of G, the homogeneous space G/H is a semialgebraic G-set. On the other hand, for a semialgebraic G-set M the orbit G(x) of $x \in M$ is clearly a semialgebraic G-set. Moreover, the isotropy subgroup G_x is also a closed semialgebraic subgroup of G for all $x \in M$. When

 G_x is compact, as in the theory of Lie group actions, by Proposition 2.1, we have the natural semialgebraic G-homeomorphism:

$$\alpha_x \colon G/G_x \to G(x), \quad (gG_x \mapsto gx)$$

Note that every semialgebraic group has a Lie group structure [7].

Proposition 2.4 ([4, 9]). Let G be a compact semialgebraic group. Then every semialgebraic G-set has only finitely many orbit types.

Let G be a compact semialgebraic group and M a semialgebraic G-set. Then the set

$$M^G = \{x \in M \mid gx = x \text{ for all } g \in G\}$$

is a closed semialgebraic subset of M. Moreover, for a subgroup H of G, let $M_{(H)}$ denote the subspace of points on orbits of type G/H, i.e.,

$$M_{(H)} = \{x \in M \mid G_x = gHg^{-1} \text{ for some } g \in G\}.$$

By the same way as in the proof of Lemma 3.3 in [8], we obtain that, for any subgroup H of G, $M_{(H)}$ is a semialgebraic G-subset of M. In particular, if H is not a closed semialgebraic subgroup of G then $M_{(H)} = \emptyset$ because the isotropy subgroup G_x is a closed semialgebraic subgroup of G for each $x \in M$.

Furthermore, let H be a closed semialgebraic subgroup of a compact semialgebraic group G, then we can easily show that the normalizer N(H) of H is also a closed semialgebraic subgroup of G as follows; since N(H) is a closed subgroup of G, thus it remains to show that it is a semialgebraic subset of G. We define $c: G \times H \to G$ by $c(g,h) = ghg^{-1}$, then c is a semialgebraic map. Moreover, the set $c^{-1}(G-H)$ is a semialgebraic subset of $G \times H$. Then $N(H) = G - p(c^{-1}(G-H))$ is also semialgebraic, where $p: G \times H \to G$ is the projection given by p(g,h) = g. Therefore N(H) is a closed semialgebraic subgroup of G.

We conclude this section with the following observation for semialgebraic G-sets with only one orbit type.

Proposition 2.5. Let G be a compact semialgebraic group, and M a semialgebraic G-set with only one orbit type G/H. Then we have the following semialgebraic G-homeomorphisms:

- (1) $\alpha: G \times_N M^H \xrightarrow{\cong} M$, $[g,x] \mapsto g(x)$ where N is the normalizer of H in G.
- (2) The map $\beta \colon M^H/N \xrightarrow{\cong} M/G$ induced from the inclusion $M^H \hookrightarrow M$.
- (3) $\gamma \colon (G/H) \times_K M^H \stackrel{\cong}{\to} M$, $[gH, x] \mapsto g(x)$ where K = N/H.

Proof. These maps are well-known to be G-homeomorphisms, see e.g. [2, Chater II]. That these maps are semialgebraic follows easily from Propositions 2.1 and 2.3.

(1) The map α is a continuous homeomorphism. Thus we only need to show that it is semialgebraic. For this, we consider the following commutative

diagram;

where π' is the semialgebraic orbit map and θ | is the restriction of the semialgebraic G-action θ on M. Since π' is surjective, α is semialgebraic by Proposition 2.1.

(2) We only need to show that β is semialgebraic. For this, we consider the following commutative diagram;

$$M^{H} \xrightarrow{i} M$$

$$\pi' \downarrow \qquad \qquad \downarrow \pi$$

$$M^{H}/N \xrightarrow{\beta} M/G$$

where π' , π are semialgebraic orbit maps and i is the inclusion. Since π' is surjective, β is semialgebraic by Proposition 2.1.

(3) We only need to show that γ is semialgebraic. For this, we consider the following commutative diagram;

where π', π'' are semialgebraic orbit maps and θ | is the restriction of the semi-algebraic G-action θ on M^H . Since $\pi'' \circ (\pi' \times id)$ is surjective and semialgebraic, γ is semialgebraic by Proposition 2.1.

3. Proof of Theorem 1.3

In this section we prove Theorem 1.3. For this we need the equivariant semialgebraic local-triviality of the orbit map $\pi: M \to M/G$ for a semialgebraic G-set.

Lemma 3.1. Let G be a compact semialgebraic group, M a semialgebraic G-set and let $\pi: M \to M/G$ be the semialgebraic orbit map. Then there exists a finite decomposition of M/G into semialgebraic subsets B_1, \ldots, B_k such that for each B_i there exists a semialgebraic G-homeomorphism $\varphi_i: \pi^{-1}(B_i) \to B_i \times \pi^{-1}(b_i)$

such that $\pi|_{\pi^{-1}(B_i)} = p_i \circ \varphi_i$, where $b_i \in B_i$ and $p_i \colon B_i \times \pi^{-1}(b_i) \to B_i$ is the projection.

Proof. We first prove the case when M has only one orbit type, say G/H. By Proposition 2.5, we have semialgebraic G-homeomorphisms $\alpha \colon G \times_N M^H \to M$ and $\beta \colon (M^H)/N \to M/G$ where N is the normalizer of H. Let $\pi_* \colon M^H \to M^H/N$ be the semialgebraic orbit map. Apply Proposition 1.1 to π_* , so that there exists a finite decomposition of $(M^H)/N$ into semialgebraic subsets $\{A_1, \ldots, A_k\}$ such that for each A_i there exists a semialgebraic homeomorphism $\phi_i \colon \pi_*^{-1}(A_i) \to A_i \times N/H$ such that $\pi_*|_{\pi_*^{-1}(A_i)} = p_i \circ \phi_i$ where $p_i \colon A_i \times N/H \to A_i$ is the projection. Note $N/H \cong \pi_*^{-1}(a_i)$ for $a_i \in A_i$. Set $C_i = \phi_i^{-1}(A_i \times \{eH\}) \subset \pi_*^{-1}(A_i)$.

Then it is easy to see that $NC_i = \pi_*^{-1}(A_i)$. The subgroup N acts on $A_i \times N/H$ and $\pi_*^{-1}(A_i)$ but the homeomorphism $\phi_i \colon \pi_*^{-1}(A_i) \to A_i \times N/H$ is not necessarily N-equivariant. Therefore we need to define a new map $\gamma_i \colon N/H \times A_i \to NC_i = \pi_*^{-1}(A_i)$ by $\gamma_i(gH, x) = g\psi_i(x)$, where $\psi_i \colon A_i \to C_i$ is a semialgebraic homeomorphism defined by $\psi_i(x) = \phi_i^{-1}(x, eH)$. We claim that γ_i is a semialgebraic N-homeomorphism. Consider the following commutative diagram

$$\begin{array}{ccc} N \times A_i & \xrightarrow{\operatorname{id} \times \psi_i} & N \times C_i \\ & & \cong & & \downarrow \theta | \\ N/H \times A_i & \xrightarrow{\gamma_i} & NC_i \end{array}$$

where π' is the quotient map and θ | is the restriction of the action map $\theta \colon G \times M \to M$. Since all other maps in the above diagram are surjective and semialgebraic, γ_i is surjective and semialgebraic by Proposition 2.1. Suppose $\gamma_i(gH,x) = \gamma_i(g'H,x')$ for $(gH,x), (g'H,x') \in N/H \times A_i$. Then $g\psi_i(x) = g'\psi_i(x')$ implies that $\psi_i(x) = g^{-1}g'\psi_i(x')$. Hence $\psi_i(x)$ and $\psi_i(x')$ are contained in the same N-orbit in M^H , which implies that x = x' in A_i . Therefore $\psi_i(x) = g^{-1}g'\psi_i(x)$ and thus $g^{-1}g' \in N_{\psi_i(x)} = H$. Hence gH = g'H

which implies that γ_i is injective. This completes the proof of the claim. Clearly γ_i induces a semialgebraic N-homeomorphism $\gamma_i' : \pi_*^{-1}(A_i) = NC_i \to A_i \times N/H$ by $\gamma_i' = c \circ \gamma_i^{-1}$, where $c : N/H \times A_i \to A_i \times N/H$ is a semialgebraic map defined by c(gH, x) = (x, gH). And the following diagram commutes.

Now let us continue our original proof. Let $B_i = \beta(A_i) \subset M/G$. Then $\{B_i\}$ is a finite semialgebraic decomposition of M/G and $\pi_*^{-1}(A_i) = (\pi^{-1}(B_i))^H$. Hence we have a semialgebraic G-homeomorphism

$$\varphi_{i} \colon \quad \pi^{-1}(B_{i}) \cong G \times_{N} (\pi^{-1}(B_{i}))^{H} \quad (\because \alpha^{-1})$$

$$= G \times_{N} \pi_{*}^{-1}(A_{i})$$

$$\cong G \times_{N} (N/H \times A_{i}) \quad (\because \operatorname{id} \times_{N} \gamma_{i}')$$

$$\cong G \times_{N} (N/H \times B_{i}) \quad (\because \operatorname{id} \times_{N} (\operatorname{id} \times \beta))$$

$$\cong (G \times_{N} N/H) \times B_{i}$$

$$\cong G/H \times B_{i} \cong B_{i} \times G/H$$

such that $\pi|_{\pi^{-1}(B_i)} = p_i \circ \varphi_i$ where $p_i : B_i \times G/H \to B_i$ is the projection. This completes the proof of the case when M has only one orbit type.

We now prove the general case. By Proposition 2.4, M has finite orbit types, say $G/H_1, \ldots, G/H_l$. Then for each $i=1,\ldots,l,\ M_{(H_i)}$ has only one orbit type. Hence, by the previous case, the restriction $\pi|\colon M_{(H_i)}\to M_{(H_i)}/G$ has the equivariant semialgebraic local-triviality. Since M (resp. M/G) is the disjoint union of $M_{(H_i)}$ (resp. $M_{(H_i)}/G)$, $\pi: M \to M/G$ has obviously the equivariant semialgebraic local-triviality.

As an application of Lemma 3.1, we prove Theorem 1.3 as follows.

Proof of Theorem 1.3. By Lemma 3.1, there exists a finite decomposition of M/G into semialgebraic subsets A_1, \ldots, A_l such that for each A_j there exists a semialgebraic G-homeomorphism $\psi_j \colon \pi^{-1}(A_j) \to A_j \times \pi^{-1}(a_j)$ such that $\pi|_{\pi^{-1}(A_j)} = q_j \circ \psi_j$ where $a_j \in A_j$, $\pi \colon M \to M/G$ is the semialgebraic orbit map and $q_j \colon A_j \times \pi^{-1}(a_j) \to A_j$ is the projection.

On the other hand, since $f: M \to N$ is a semialgebraic G-invariant map, it induces a semialgebraic map $\bar{f}: M/G \to N$ by Proposition 2.1. Apply Proposition 1.1 to \bar{f} , then there exists a finite decomposition of N into semialgebraic subsets C_1, \ldots, C_m such that for each C_k there exists a semialgebraic homeomorphism $\phi_k: \bar{f}^{-1}(C_k) \to C_k \times \bar{f}^{-1}(c_k)$ such that $\bar{f}|_{\bar{f}^{-1}(C_k)} = r_k \circ \phi_k$ where $c_k \in C_k$ and $r_k: C_k \times \bar{f}^{-1}(c_k) \to C_k$ is the projection.

By Proposition 2.2, there exists a finite decomposition of N into semialgebraic subsets $\{B_i\}$ which is compatible with $\{C_k\} \cup \{\bar{f}(A_i)\}$. We claim that

 $\{B_i\}$ is the desired finite decomposition of N. Notice that each B_i is either $B_i \cap \bar{f}(M/G) = \emptyset$ or $B_i \subset \bar{f}(M/G) = f(M)$ by the compatibility of $\{B_i\}$.

In case $B_i \cap \overline{f}(M/G) = \emptyset$, $f^{-1}(B_i) = f^{-1}(b_i) = \emptyset$, and hence $f^{-1}(B_i) = \emptyset = B_i \times f^{-1}(b_i)$.

In case $B_i \subset \bar{f}(M/G)$, there exist $C_{k(i)}$ and $A_{j(i)}$ such that $B_i \subset C_{k(i)}$, $B_i \subset \bar{f}(A_{j(i)})$ by the compatibility of $\{B_i\}$. Thus we obtain a semialgebraic G-homeomorphism

$$\varphi_i \colon \quad f^{-1}(B_i) = \pi^{-1}(\bar{f}^{-1}(B_i)) \underset{\psi_{j(i)}}{\overset{\simeq}{\longrightarrow}} \bar{f}^{-1}(B_i) \times \pi^{-1}(a_j)$$
$$\underset{\phi_{k(i)} \times \mathrm{id}}{\overset{\simeq}{\longrightarrow}} B_i \times \bar{f}^{-1}(b_i) \times \pi^{-1}(a_j) \underset{\mathrm{id} \times h}{\overset{\simeq}{\longrightarrow}} B_i \times f^{-1}(b_i)$$

where $b_i \in B_i$, $a_j \in \bar{f}^{-1}(b_i)$ and $h : \bar{f}^{-1}(b_i) \times \pi^{-1}(a_j) \to f^{-1}(b_i)$ is the semi-algebraic G-homeomorphism which is the restriction of $\psi_{j(i)}^{-1}$. Note $f^{-1}(b_i) = \pi^{-1}(\bar{f}^{-1}(b_i))$. It is easy to check that the diagram

commutes where p_i is the projection. This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2.

Let $\pi_M\colon M\to M/G$ and $\pi_N\colon N\to N/G$ denote the semialgebraic orbit maps. Apply Theorem 1.3 to π_M , then we have a finite decomposition of M/G into semialgebraic subsets $\{A_j\}$ such that for each A_j there exists a semialgebraic G-homeomorphism $\phi_j\colon \pi_M^{-1}(A_j)\to A_j\times \pi_M^{-1}(a_j)$ such that $\pi_M|_{\pi_M^{-1}(A_j)}=q_j\circ\phi_j$ where $a_j\in A_j$ and $q_j\colon A_j\times\pi_M^{-1}(a_j)\to A_j$ is the projection. Similarly, there exists a finite decomposition of N/G into semialgebraic subsets $\{C_k\}$ such that for each C_k there exists a semialgebraic G-homeomorphism $\psi_k'\colon \pi_N^{-1}(C_k)\to C_k\times\pi_N^{-1}(c_k)$ such that $\pi_N|_{\pi_N^{-1}(C_k)}=r_k\circ\psi_k'$ where $c_k\in C_k$ and $r_k\colon C_k\times\pi_N^{-1}(c_k)\to C_k$ is the projection. Moreover, since $f\colon M\to N$ is a semialgebraic G-map, it induces a semialgebraic map $\bar f\colon M/G\to N/G$. By Proposition 1.1, there exists a finite decomposition of N/G into semialgebraic subsets $\{D_l\}$ such that for each D_l there exists a semialgebraic homeomorphism $\chi_l\colon \bar f^{-1}(D_l)\to D_l\times \bar f^{-1}(d_l)$ such that $\bar f|_{\bar f^{-1}(D_l)}=s_l\circ\chi_l$ where $d_l\in D_l$ and $s_l\colon D_l\times \bar f^{-1}(d_l)\to D_l$ is the projection.

By Proposition 2.2, there exists a finite decomposition of N/G into semialgebraic subsets $\{B_i\}$ which is compatible with $\{\bar{f}(A_j)\} \cup \{C_k\} \cup \{D_l\}$. Notice that each B_i is either $B_i \cap \bar{f}(M/G) = \emptyset$ or $B_i \subset \bar{f}(M/G) = \pi_N(f(M))$ by the compatibility of $\{B_i\}$. In case $B_i \cap \bar{f}(M/G) = \emptyset$, $\pi_N^{-1}(b_i) = \emptyset$ for all $b_i \in B_i$. Set $T_i = \pi_N^{-1}(B_i)$, then $f^{-1}(T_i) = \emptyset$ and $f^{-1}(G(y_i)) = \emptyset$ for all $y_i \in T_i$. Hence $f^{-1}(T_i) = \emptyset = B_i \times f^{-1}(G(y_i))$.

In case $B_i \subset \bar{f}(M/G)$, there exist $A_{j(i)}$, $C_{k(i)}$ and $D_{l(i)}$ such that $B_i \subset \bar{f}(A_{j(i)})$, $B_i \subset C_{k(i)}$ and $B_i \subset D_{l(i)}$ by the compatibility of $\{B_i\}$. Put $T_i = \pi_N^{-1}(B_i)$, then T_i is a semialgebraic G-subset of N which is semialgebraically G-homeomorphic to $B_i \times \pi_N^{-1}(b_i)$ by $\psi'_{k(i)}$. Put

$$\psi_i = \psi'_{k(i)}|: T_i = \pi_N^{-1}(B_i) \stackrel{\simeq}{\to} B_i \times \pi_N^{-1}(b_i)$$

where $\psi'_{k(i)}$ denotes the restriction of $\psi'_{k(i)}$.

On the other hand, $f^{-1}(T_i) = \pi_M^{-1}(\bar{f}^{-1}(B_i))$ is semialgebraically G-homeomorphic to $\bar{f}^{-1}(B_i) \times \pi_M^{-1}(a_{j(i)})$ by $\phi_{j(i)}$ where $a_{j(i)} \in \bar{f}^{-1}(b_i) \subset A_{j(i)}$. Thus we have a semialgebraic G-homeomorphism

$$\varphi_i \colon \quad f^{-1}(T_i) = \pi_M^{-1}(\bar{f}^{-1}(B_i)) \underset{\phi_{j(i)}|}{\overset{\simeq}{\to}} \bar{f}^{-1}(B_i) \times \pi_M^{-1}(a_{j(i)})$$

$$\underset{\chi_{l(i)}|\times \mathrm{id}}{\overset{\simeq}{\to}} B_i \times \bar{f}^{-1}(b_i) \times \pi_M^{-1}(a_{j(i)}) \underset{\mathrm{id}_{B_i} \times h}{\overset{\simeq}{\to}} B_i \times f^{-1}(\pi_N^{-1}(b_i))$$

where $h \colon \bar{f}^{-1}(b_i) \times \pi_M^{-1}(a_{j(i)}) \to \pi_M^{-1}(\bar{f}^{-1}(b_i)) = f^{-1}(\pi_N^{-1}(b_i))$ is a semialgebraic *G*-homeomorphism which is the restriction of $\phi_{j(i)}^{-1}$.

It is easy to check that the diagram

commutes where $f|: f^{-1}(\pi_N^{-1}(b_i)) \to \pi_N^{-1}(b_i)$ is the restriction of f. Note $\pi_N^{-1}(b_i) = G(y_i)$ for all $y_i \in \pi_N^{-1}(b_i) \subset T_i$. This completes the proof of Theorem 1.2

References

- [1] J. Bochnak, M. Coste, and M.-F. Roy, *Real Algebraic Geometry*, Erg. der Math. und ihrer Grenzg., vol. 36, Springer-Verlag, Berlin Heidelberg, 1998.
- [2] G. E. Bredon, Introduction to Compact Transformation Groups, Pure and Applied Mathematics, vol. 46, Academic Press, New York, London, 1972.
- [3] G. W. Brumfiel, Quotient space for semialgebraic equivalence relation, Math. Z. 195 (1987), no. 1, 69-78.
- [4] M. -J. Choi, D. H. Park, and D. Y. Suh, The existence of semialgebraic slices and its applications, J. Korean. Math. Soc. 41 (2004), no. 4, 629-646.
- [5] R. M. Hardt, Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math. 102 (1980), no. 2, 291–302.
- [6] H. Hironaka, Triangulations of algebraic sets, Proc. Sympos. Pure Math. 29 (1975), 165– 185.

- [7] J. J. Madden and C. M. Stanton, One-dimensional Nash groups, Pacific. J. Math. 154 (1992), no. 2, 331-344.
- [8] D. H. Park and D. Y. Suh, Equivariant semi-algebraic triangulation of real algebraic G-varieties, Kyushu J. Math. 50 (1996), no. 1, 179–205.
- [9] _____, Linear embeddings of semialgebraic G-spaces, Math. Z. 242 (2002), no. 4, 725-742.

DEPARTMENT OF MATHEMATICS COLLEGE OF NATURAL SCIENCES CHONNAM NATIONAL UNIVERSITY GWANGJU 500-757, KOREA

 $E ext{-}mail\ address: dhpark87@chonnam.ac.kr}$