DOI QR코드

DOI QR Code

LOCALLY HOMOGENEOUS CRITICAL METRICS ON FOUR-DIMENSIONAL MANIFOLDS

  • Published : 2007.01.31

Abstract

We classify complete, locally homogeneous metrics with finite volume on four-dimensional manifolds which are critical points for the squared $L^2-norm$ functionals of either the full Riemannian curvature tensor or the Weyl curvature tensor defined on the space of Riemannian metrics.

Keywords

References

  1. M. T. Anderson, Orbifold compactness for spaces of Riemannian metrics and applica- tions, Math. Ann. 331 (2005), no. 4, 739-778 https://doi.org/10.1007/s00208-004-0603-5
  2. A. L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer-Verlag, 1987
  3. A. Derdzinski, Self-dual Kahler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405-433
  4. R. O. Filipkiewicz, Four dimensional geometries, Ph. D. Thesis, University of Warwick, 1984
  5. G. R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differential Geometry 3 (1969), 309-349 https://doi.org/10.4310/jdg/1214429056
  6. J. Kim, Critical Kahler surfaces, Bull. Korean Math. Soc. 35 (1998), no. 3, 421-431
  7. F. Lamontagne, Une remarque sur la norme $L^2$ du tenseur de courbure, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), no. 3, 237-240
  8. F. Lamontagne, Critical metrics for the $L^2$ -norms of the curvature tensor, Ph. D. Thesis, 1993. Stony Brook
  9. C. LeBrun, Self-dual manifolds and hyperbolic geometry, Einstein metrics and Yang- Mills connections (Sanda, 1990), 99-131, Lecture Notes in Pure and Appl. Math., 145, Dekker, New York, 1993
  10. J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293-329 https://doi.org/10.1016/S0001-8708(76)80002-3
  11. M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, N.Y., Heider- berg, Berlin, 1972
  12. P. Scott, The geometries of 3-Manifolds, Bull. London Math. Soc. 15 (1983), no. 5, 401-487 https://doi.org/10.1112/blms/15.5.401
  13. V. De Smedt and S. Salamon, Anti-self-dual metrics on Lie groups, Differential geometry and integrable systems (Tokyo, 2000), 63-75, Contemp. Math. 308, Amer. Math. Soc. Providence, RI, 2002
  14. W. P. Thurston, Three-Dimensional Geometry and Topology Vol. 1., Edited by Silvio Levy, Princeton Mathematical Series, 35, Princeton Univ. Press, Princeton, New Jersey, 1997
  15. G. Tian and J. Viaclovsky, Bach-flat asymptotically locally Euclidean metrics, Invent. Math. 160 (2005), no. 2, 357-415 https://doi.org/10.1007/s00222-004-0412-1
  16. P. Bernat, N. Conze, M. Duflo, M. Levy-Nahas, M. Rais, P. Renouard, and M. Vergne, Representations des groupes de Lie resolubles, Monographies de la Societe Mathematique de France, No. 4. Dunod, Paris, 1972
  17. C. T. C. Wall, Geometries and geometric structures in real dimension 4 and complex dimension 2, Lecture Notes in Math., 1167, Springer, Berlin, 1985, 268-292 https://doi.org/10.1007/BFb0075230
  18. C. T. C. Wall, Geometric structures on compact complex analytic surfaces, Topology 25 (1986), no. 2, 119-153 https://doi.org/10.1016/0040-9383(86)90035-2

Cited by

  1. Critical metrics for quadratic functionals in the curvature on 4-dimensional manifolds vol.29, pp.5, 2011, https://doi.org/10.1016/j.difgeo.2011.07.001