Polyurethane Flexible Foam for Automotive Seat Cushion Having Both Superior Static and Dynamic Properties

우수한 정적, 동적 특성을 보이는 자동차 시트용 폴리우레탄 발포체

  • Published : 2007.01.31

Abstract

Polyurethane flexible foams have been widely used for automotive seat cushions because of their excellent performance. It has been required so far to reduce the density of seat cushion foam. However, recently, improving the riding comfort of seat cushions becomes more important. With regard to riding comfort, we investigated the improvement of static properties such as the ball rebound property and the hysteresis loss. We also studied the vibration characteristics, which are well known as an important factor to affect the comfort performance during driving.

폴리우레탄 발포체는 쿠션성이 뛰어나기 때문에 자동차 시트 쿠션으로 다양하게 사용이 되고 있다. 그 동안 시트 쿠션 발포체의 연구에 있어서 발포체 밀도를 낮추고자 하는 요구가 있어 왔으나, 최근에는 승차 안락감을 증대시키는 것이 더욱 중요시되고 있다. 승차 안락감과 관련하여 본 연구에서는 반발 탄성률 특성 및 히스테리시스 특성과 같은 정적물성을 조절하는 것에 관하여 연구하였다. 또한 승차 운전시 안락감 성능에 영향을 주는 매우 중요한 인자로 알려져 있는 진동 특성에 관하여 고찰하였다.

Keywords

References

  1. J. W. Leenslag, E. Huygens, and A. Tan, Cell. Polym., 16, 411 (2000)
  2. J. W. Hartings and J. H. Hagan, J. Cell. Plast., 33, 81 (1997)
  3. G. R. Blair, A. R. Wilson, and R. J. horn, SAE Technical Paper No.960512 (1996)
  4. Y. Gu, SAE Technical Paper No.980555 (1998)
  5. M. R. Kinkelaar, Am. Ind. Hyg. Assoc. J., 57, 837 (1996) https://doi.org/10.1080/15428119691014323
  6. S. Doi, Toyota R&D Reviews, 30, 3 (1999)
  7. G. R. Blair, R. S. Miliojevich, and J. D. Van Heuman, SAE Technical Paper No.980656 (1998)
  8. W. Shen and A. M. Vertiz, SAE Technical Paper No.970597 (997)
  9. G. S. Paddan and M. J. Griffin, Ergonomics, 37, 1513 (1994)
  10. K. Ebe and M. J. Griffin, Ergonomics, 43, 771 (1994)
  11. S. Tanigaki and K. Kaneko, JSAE Paper No.9535981 (1995)
  12. B. Czupryski and J. Liszkowska, J. Appl. Polym. Sci., 100, 2020 (2006) https://doi.org/10.1002/app.22604
  13. M. Zeng and L. Zhang, J. Appl. Polym. Sci., 100, 708 (2006) https://doi.org/10.1002/app.23421
  14. P. Laity and J. Taylor, J. Appl. Polym. Sci., 100, 779 (2006) https://doi.org/10.1002/app.22644
  15. R. Narayan, D. Chattopadhyay, and B. Sreedhar, J. Appl Polym. Sci., 99, 368 (2006) https://doi.org/10.1002/app.22430
  16. Y. Wei, F. Cheng, H. Li, and J. Yu, J. Appl. Polym. Sci., 92, 351 (2004) https://doi.org/10.1002/app.20023
  17. M. Semsarzadeh and A. Navarchian, J. Appl. Polym. Sci., 90, 963 (2003) https://doi.org/10.1002/app.12691
  18. I. Rhoney, S. Brown, N. Nicholas, and A. Pethrick, J. Appl. Polym. Sci., 91, 1335 (2004) https://doi.org/10.1002/app.13302
  19. Y. Inoue, Bacteriacide & Fungicide for a Comfortable Environment, CMC, New York, 1992
  20. G. Woods, The ICI Polyurethane Handbook, Wiley, New York, 1990
  21. G. Oertel, Polyurethane Handbook, Hanser, New York, 1993
  22. D. Klempner and K. Frisch, Handbook of Polymeric Foams and Foam Technology, Oxford Univ. Press, New York,1991
  23. S. A. Jones, K. W. Scott, and B. G. Willough, J. Cell. Plast., 38, 285 (2002)
  24. A. M. Abdul-Rani, N. Hopkinson, and P. M. Dickens, J. Cell Plast., 41,133 (2005) https://doi.org/10.1177/0021955X05051738
  25. R. V. Maris, Y. Tamano, and H. Yoshimura, J. Cell Plast., 41, 305 (2005) https://doi.org/10.1177/0021955X05055113
  26. D. Jackovich, B. O'toole, and M. Cameron, J. Cell. Plast., 41, 153 (2005) https://doi.org/10.1177/0021955X05051739
  27. H. Oka, Y. Tokunaga, and T. Masuda, J. Cell Plast., 42, 307 (2006) https://doi.org/10.1177/0021955X06063516
  28. B. Bastin, R. Paleja, and J. Lefebvre, J. Cell. Plast., 39, 323 (2003) https://doi.org/10.1177/0021955X03039004005
  29. C. Fitzgerald, I. Lyn, and N. J. Mills, J. Cell. Plast., 40, 89 (2004) https://doi.org/10.1177/0021955X04041954