초록
The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signals onto frequency domain. The raw signals can not show the significant feature, therefore difference values between the signal of the health conditions and that of the fault conditions are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the fault type. This study describes the results of detecting fault using wavelet analysis.