DOI QR코드

DOI QR Code

Involvement of Early Growth Response Gene 1 (EGR-1) in Growth Suppression of the Human Colonic Tumor Cells By Apigenin and Its Derivative Isovitexin

Apigenin과 대사물 isovitexin에 의한 인체 대장암세포의 세포활성 억제효과에 있어서의 EGR-1의 역할 연구

  • Moon, Yu-Seok (Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine) ;
  • Cui, Lei-Guang (Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine) ;
  • Yang, Hyun (Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine)
  • 문유석 (부산대학교 의학전문대학원 미생물학 및 면역학교실) ;
  • 최뢰광 (부산대학교 의학전문대학원 미생물학 및 면역학교실) ;
  • 양현 (부산대학교 의학전문대학원 미생물학 및 면역학교실)
  • Published : 2007.01.29

Abstract

It has been previously described that transcription factor early growth response gene product 1 (EGR-1) functions as a tumor suppressor gene. This study was conducted to demonstrate that EGR-1 induction by phytochemical apigenin and its derivative isovitexin can mediate the growth suppression of the intestinal epithelial tumor cells. Apigenin and isovitexin induced EGR-1 gene expression both in the dose and time-dependent manners. Moreover the induction was relatively late around 9-12 hr after treatment of HCT-116 cells, while several anti-inflammatory agent such as NSAIDS and catechins elicit the ECR-1 gene expression at much earlier time about 1-3 hr after treatment. In terms of signal transduction, ERK1/2 was critical for apigenin-induced EGR-1 gene expression and its promoter activation. When EGR-1 gene expression was blocked with EGR-1 small interference RNA, the cytotoxicity of apigenin in the human epithelial cells was attenuated, suggesting the involvement of EGR-1 in the anti-tumoric activity of apigenin. To link the EGR-1 induction to EGR-1-regulated gene products in colon cancer, NSAID-Activated Gene 1 (NAG-1) was demonstrated to be elevated by apigenin and isovitexin at 24-48 hr after treatment. Taken together, apigenin-activated ERK1/2 mediated EGR-1 gene induction, which was associated with suppression of the cellular viability by apigenin compound.

Tumor suppressor 유전자로알려진 early growth response gene 1 (EGR-1)에 있어 항산화 천연물인 apigenin과 그대사물인 isovitexin에 의한 장관 상피성 종양세포에 대하여 항종양 역할을 규명하였다. Apigenin 과 isovitexin은 대장암세포에서의 EGR-1 단백질의 발현을 9-12시간의 노출에 의해 농도 의존적으로 증가하였다. 또한 신호전달측면에서 이런 apigenin에 의한 EGR-1 유전자의 유도가 U0126 화합물에 의해 완벽하게 저해 받는 것으로 보아 ERK1/2 MAP kinase pathway의 이 신호전달계에서의 관여를 보여주었다. 본 연구에서 apigenin에 의해 농도 의존적으로 대장암세포의 세포활성의 저해를 MTT assay를 통해 보였고, 또한 EGR-1 siRNA를 transfectien한 세포의 경우 이런 apigenin에 의한 세포활성의 저해효과를 완화하였다. 따라서 apigenin에 의한 항종암세포 세포활성 억제에 있어 EGR-1의 중요성을 보여 준다. 이런 EGR-1에 의해 유도되는 유전자중 대표적으로 NAG-1 유전자의 경우 apigenin과 isovitexin에 의해 24-48시간에 발현이 증가하였다. 결론적으로 암세포 증식억제활성이 있고 apoptosis 유도효과가 있는 NAG-1의 유도에 의해 대장암 세포의 세포활성이 억제된 것으로 의미되고 향후 apigenin 유도의 NAG-1유전자에 의한 암세포증식의 억제기전에 대한 명확한 연구가 요구된다.

Keywords

References

  1. Baek, S. J., J. M. Horowitz and T. E. Eling. 2001. Molecular cloning and characterization of human non-steroidal anti-inflammatory drug-activated gene promoter. Basal transcription is mediated by Sp1 and Sp3. J. Biol. Chem. 276, 33384-33392 https://doi.org/10.1074/jbc.M101814200
  2. Baek, S. J., J. S. Kim, J. B. Nixon, R. P. DiAugustine, and T. E. Eling. 2004. Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J. Biol. Chem. 279, 6883-6892 https://doi.org/10.1074/jbc.M305295200
  3. Baek, S. J., J. S. Kim, S. M. Moore, S. H. Lee, J. Martinez, J. and T. E. Eling. 2005. Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the up-regulation of NAG-1, an anti-tumorigenic protein. Mol. Pharmacol. 67, 356-364 https://doi.org/10.1124/mol.104.005108
  4. Baek, S. J., L. C. Wilson, C. H. Lee and T. E. Eling. 2002. Dual function of nonsteroidal anti-inflammatory drugs (NSAIDs): inhibition of cyclooxygenase and induction of NSAID-activated gene. J. Pharmacol. Exp. Ther. 301, 1126-1131 https://doi.org/10.1124/jpet.301.3.1126
  5. Bottone, F. G., Jr., S. J. Baek, J. B. Nixon, and T. E. Eling. 2002. Dially1 disulfide (DADS) induces the anti-tumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT 116 cells. J. Nutr. 132, 773-778 https://doi.org/10.1093/jn/132.4.773
  6. Castellone, M. D., H. Teramoto, B. O. Williams, K. M. Druey and J. S. Gutkind. 2005. Prostaglandin E2 promotes colon cancer cell growth through a Cs-axin-beta-catenin signaling axis. Science 310, 1504-1510 https://doi.org/10.1126/science.1116221
  7. Chell, S., H. A. Patsos, D. Qualtrough, H. Z. AM, D. J. Hicks, A. Kaidi, I. R. Witherden, A. C. Williams, and C. Paraskeva. 2005. Prospects in NSAID-derived chemo-prevention of colorectal cancer. Biochem. Soc. Trans. 33, 667-671 https://doi.org/10.1042/BST0330667
  8. Chintharlapalli, S., S. Papineni, S. J. Baek, S. Liu, S. and S. Safe. 2005. 1,1-Bis(3'-indoly1)-1-(p-substitutedpheny1) methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol. Pharmacol. 68, 1782-1792
  9. De Sousa, L. P., B. S. Brasil, B. M. Silva, M. H. Freitas, S. V. Nogueira, P. C. Ferreira, E. G. Kroon, and C. A. Bonjardim. 2005. Plasminogen/plasmin regulates c-fos and egr-1 expression via the MEK/ERK pathway. Biochem. Biophys. Res. Commun. 329, 237-245 https://doi.org/10.1016/j.bbrc.2005.01.123
  10. Dieckgraefe, B. K. and D. M. Weems. 1999. Epithelial injury induces egr-1 and fos expression by a pathway involving protein kinase C and ERK. Am. J. Physiol. 276, G322-G330
  11. Fenton J. I., and N. G. Hord. 2004. Flavonoids promote cell migration in nontumorigenic colon epithelial cells differing in Ape genotype: implications of matrix metalloproteinase activity. Nutr. Cancer. 48, 182-188 https://doi.org/10.1207/s15327914nc4802_8
  12. Fukuda, R., B. Kelly, and G. L. Semenza. 2003. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 63, 2330-2334
  13. Hampton, T. 2005 NSAID studies abound in cancer research: drugs may have niche in prevention and treatment, JAMA. 293, 2579-2580 https://doi.org/10.1001/jama.293.21.2579
  14. Horinaka M, T. Yoshida, T. Shiraishi, S. Nakata, M. Wakada, and T. Sakai. 2006. The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol. Cancer. Ther. 5, 945-951 https://doi.org/10.1158/1535-7163.MCT-05-0431
  15. Husain, S. S., I. L. Szabo, and A. S. Tamawski, 2002. NSAID inhibition of GI cancer growth: clinical implications and molecular mechanisms of action. Am. J. Gastroenterol. 97, 542-553 https://doi.org/10.1111/j.1572-0241.2002.05528.x
  16. Iczkowski, K. A. and C. G. Pantazis. 2003. Overexpression of NSAID-activated gene product in prostate cancer. Int. J. Surg. Pathol. 11, 159-166 https://doi.org/10.1177/106689690301100302
  17. Kune, G. A. 2000. Colorectal cancer chemoprevention: aspirin, other NSAID and COX-2 inhibitors. Aust. N. Z. J. Surg. 70, 452-455 https://doi.org/10.1046/j.1440-1622.2000.01844.x
  18. Liang, K. W., C. T. Ting, S. C. Yin, Y. T. Chen, S. J. Lin, J. K. Liao and S. L. Hsu. 2006. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem. Pharmacol. 71, 806-817 https://doi.org/10.1016/j.bcp.2005.12.028
  19. McVean, M., H. Xiao, K. Isobe, and J. C. Pelling. 2000. Increase in wild-type p53 stability and transactivational activity by the chemopreventive agent apigenin in keratinocytes. Carcinogenesis 21, 633-639 https://doi.org/10.1093/carcin/21.4.633
  20. Moon, Y., F. G. Bottone, M. F. McEntee, T. E. Eling. 2005. Suppression of tumor cell invasion by cyclooxygenase inhibitors is mediated by thrombospondin-1 via the early growth response gene Egr-1. Mol. Cancer. Ther. 4, 1551-1558 https://doi.org/10.1158/1535-7163.MCT-05-0213
  21. Moon, Y., M. Lee, and H. Yang. 2006. Involvement of early growth response gene 1 in the modulation of microsomal prostaglandin E synthase1 by epigallocatechin gallate in A549 human pulmonary epithelial cells. Biochem. Pharmacol. in press https://doi.org/10.1016/j.bcp.2006.08.017
  22. Pai, R., B. Soreghan.I. L. Szabo, M. Pavelka, D. Baatar, and A. S. Tarnawski. 2002. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat. Med. 8, 289-293 https://doi.org/10.1038/nm0302-289
  23. Shao, J., B. M. Evers, and H. Sheng. 2004. Prostaglandin E2 synergistically enhances receptor tyrosine kinase- dependent signaling system in colon cancer cells. J. Biol. Chem. 279, 14287-14293 https://doi.org/10.1074/jbc.M313276200
  24. Shao, J., C. Jung, C. Liu, and H. Sheng. 2005. Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J. Biol. Chem. 280, 26565-26572 https://doi.org/10.1074/jbc.M413056200
  25. Wang W, P. C. VanAlstyne, K. A. Irons, S. Chen, J. W. Stewart, and D. F. Birt. 2004. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr. Cancer. 48, 106-114 https://doi.org/10.1207/s15327914nc4801_14