DOI QR코드

DOI QR Code

Molecular Events of Insulin Action Occur at Lipid Raft/Caveolae in Adipocytes

지방세포의 Lipid Raft/Caveolae에서 인슐린의 분자적 작용기전

  • Bae, Sun-Sik (Department of pharmacology and MRC for ischemic tissue regeneration, Pusan National University College of Medicine) ;
  • Yun, Sung-Ji (Department of pharmacology and MRC for ischemic tissue regeneration, Pusan National University College of Medicine) ;
  • Kim, Eun-Kyung (Department of pharmacology and MRC for ischemic tissue regeneration, Pusan National University College of Medicine) ;
  • Kim, Chi-Dae (Department of pharmacology and MRC for ischemic tissue regeneration, Pusan National University College of Medicine) ;
  • Choi, Jang-Hyun (Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology) ;
  • Suh, Pann-Ghill (Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology)
  • Published : 2007.01.29

Abstract

Insulin stimulates the fusion of intracellular vesicles containing glucose transporter 4 (GLUT4) with plasma membrane in adipocytes and muscle cells. Here we show that adipocyte differentiation results in enhanced insulin sensitivity of glucose uptake. On the other hand, glucose uptake in response to platelet-derived growth factor (PDGF) stimulation was markedly reduced by adipocyte differentiation. Expression level of insulin receptor and caveolin-1 was dramatically increased during adipocyte differentiation. Adipocyte differentiation caused :ilightly enhanced activation of acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) by insulin stimulation. However, activation of Akt by PDGF stimulation was largely reduced. Activation of ERK was not detected in both fibroblasts and adipocytes after stimulation with insulin. PDGF-dependent activation of ERK was reduced by adipocyte differentiation. Insulin-dependent glucose uptake was abrogated by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, in both fibroblasts and adipocytes. Also disassembly of caveolae structure by $methyl-\beta-cyclodextrin$ caused impairment of Akt activation and glucose uptake. Finally, insulin receptor, Akt, SH2-domain-containing inositol 5-phosphatase 2 (SHIP2), and regulatory subunit of PI3K are localized at lipid raft domain and the translocation was facilitated upon insulin stimulation. Given these results, we suggest that lipid raft provide proper site for insulin action for glucose uptake.

인슐린은 지방세포 또는 근육세포에서 포도당 흡수 조절 통로단백질이 함유되어 있는 소포제를 세포막으로의 이동을 촉진시킨다. 우리는 여기서 지방세포로의 분화는 인슐린에 의한 포도당 흡수에 대한 반응이 증가됨을 보였다. 반면에 지방세포로의 분화는 PDGF에 의한 포도당 흡수 반응이 감소됨을 보였다. 인슐린 수용체나 caveolae는 지방세포로의 분화과정 동안 발현이 증가된다. 또한 지방세포로의 분화는 인슐린에 의한 Akt의 활성을 증가시켰다. 하지만 PDGF에 의한 Akt의 활성은 크게 감소하였다. 하지만 인슐린은 지방세포 또는 섬유아 전구세포에서 ERK의 활성을 유도하지 않았다. PDGF에 의한 ERK 활성 또한 지방세포로의 분화과정에 따라 감소하였다. P13K의 저해제인 LY294002는 지방세포 뿐만 아니라 섬유아 전구세포에서 인슐린에 의한 포도당 흡수를 저해하였다. 마지막으로 인슐린 수용체, Akt, SHIP2, p85등이 lipid raft/caveolae에 존재함을 확인하였고 인슐린에 의해 이런 단백질들이 lipid raft/caveolae로 이동함을 관찰하였다. 이런 결과를 토대로 lipid raft는 포도당 홉수를 위한 인슐린의 기능적 작용을 하는데 매우 중요한 환경을 제공함을 주장한다.

Keywords

References

  1. Alessi, D. R., S. R. James, C. P. Downes, A. B. Holmes, P. R. Gaffney, C. B. Reese, and P. Cohen. 1997. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Ba. Curr. Biol. 7, 261-269 https://doi.org/10.1016/S0960-9822(06)00122-9
  2. Bae, S. S., H. Cho, J. Mu, and M. J. Birnbaum. 2003. Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. J. Biol. Chem. 27, 49530-49536
  3. Baumann, C. A., V. Ribon, M. Kanzaki, D. C. Thurmond, S. Mora, S. Shigematsu, P. E. Bickel, J. E. Pessin, and A. R. Saltiel. 2000. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407, 202-207 https://doi.org/10.1038/35025089
  4. Bickel, P. E. 2002. Lipid rafts and insulin signaling. Am. J. Physiol. Endocrinol. Metab. 282, E1-E10
  5. Chamberlain, L. H., and G. W. Gould. 2002. The vesicle-and target-SNARE proteins that mediate Glut4 vesicle fusion are localized in detergent-insoluble lipid rafts present on distinct intracellular membranes. J. Biol. Chem. 277, 49750-49754 https://doi.org/10.1074/jbc.M206936200
  6. Cheatham, B., and C. R. Kahn. 1995. Insulin action and the insulin signaling network. Endocr. Rev. 16, 117-142
  7. Cheatham. B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. 1994. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol. Cell. Biol. 14, 4902-4911 https://doi.org/10.1128/MCB.14.7.4902
  8. Chiang, S. H., C. A. Baumann, M. Kanzaki, D. C. Thurmond, R. T. Watson, C. L. Neudauer, I. G. Macara, J. E. Pessin, and A. R. Saltiel. 2001. Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944-948 https://doi.org/10.1038/35073608
  9. Cinti, S. 2005. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids 73, 9-15 https://doi.org/10.1016/j.plefa.2005.04.010
  10. Clarke, J. F., P. W. Young, K. Yonezawa, M. Kasuga, and G. D. Holman. 1994. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem. J. 300 (Pt 3), 631-635 https://doi.org/10.1042/bj3000631
  11. Czech, M. P. 2000. Lipid rafts and insulin action. Nature 407, 147-148 https://doi.org/10.1038/35025183
  12. Czech, M. P., and S. Cervera. 1999. Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274, 1865-1868 https://doi.org/10.1074/jbc.274.4.1865
  13. Elmendorf, J. S., and J. E. Pessin. 1999. Insulin signaling regulating the trafficking and plasma membrane fusion of GLUT4-containing intracellular vesicles. Exp. Cell Res. 253, 55-62 https://doi.org/10.1006/excr.1999.4675
  14. Frevert, E. U., and B. B. Kahn. 1997. Differential effects of constitutively active phosphatidylinositol 3-kinase on glucose transport, glycogen synthase activity, and DNA synthesis in 3T3-L1 adipocytes. Mol. Cell. Biol. 17, 190-198 https://doi.org/10.1128/MCB.17.1.190
  15. Garcia de Herreros, A., and M. J. Birnbaum. 1989. The acquisition of increased insulin-responsive hexose transport in 3T3-L1 adipocytes correlates with expression of a novel transporter gene. J. Biol. Chem. 264, 19994-19999
  16. Gustavsson, J., S. Parpal, M. Karlsson, C. Ramsing, H. Thorn, M. Borg, M. Lindroth, K. H. Peterson, K. E. Magnusson, and P. Stralfors. 1999. Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J. 13, 1961-1971 https://doi.org/10.1096/fasebj.13.14.1961
  17. Ha, H., and Y. Pak. 2005. Modulation of the caveolin-3 and Akt status in caveolae by insulin resistance in H9c2 cardiomyoblasts. Exp. Mol. Med. 37, 169-178 https://doi.org/10.1038/emm.2005.23
  18. Hong, S., H. Huo, J. Xu, and K. Liao. 2004. Insulin-like growth factor-1 receptor signaling in 3T3-L1 adipocyte differentiation requires lipid rafts but not caveolae. Cell Death Differ. 11, 714-723 https://doi.org/10.1038/sj.cdd.4401405
  19. Karlsson, M., H. Thorn, S. Parpal, P. Stralfors, and J. Gustavsson. 2002. Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes. FASEB J. 16, 249-251 https://doi.org/10.1096/fj.01-0646fje
  20. Krystal, G., J. E. Damen, C. D. Helgason, M. Huber, M. R. Hughes, J. Kalesnikoff, V. Lam, P. Rosten, M. D. Ware, S. Yew, and R. K. Humphries. 1999. SHIPs ahoy. Int. J. Biochem. Cell Biol. 31, 1007-1010 https://doi.org/10.1016/S1357-2725(99)00072-2
  21. Lazar, D. F., R. J. Wiese, M. J. Brady, C. C. Mastick, S. B. Waters, K. Yamauchi, J. E. Pessin, P. Cuatrecasas, and A. R. Saltiel. 1995. Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J. Biol. Chem. 270, 20801-20807 https://doi.org/10.1074/jbc.270.35.20801
  22. Parpal, S., M. Karlsson, H. Thorn, and P. Stralfors, 2001. Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J. Biol. Chem. 276, 9670-9678 https://doi.org/10.1074/jbc.M007454200
  23. Pike, L. J., and L. Casey. 1996. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin- enriched membrane domains. J. Biol. Chem. 271, 26453-26456 https://doi.org/10.1074/jbc.271.43.26453
  24. Rubin, C. S., E. Lai, and O. M. Rosen. 1977. Acquisition of increased hormone sensitivity during in vitro adipocyte development. J. Biol. Chem. 252, 3554-3557
  25. Sarbassov, D. D., D. A. Guertin, S. M. Ali, and D. M. Sabatini. 2005. Phosphorylation and regulation of Akt/ PKB by the rictor-mTOR complex. Science 307, 1098-1101 https://doi.org/10.1126/science.1106148
  26. Shigematsu, S., S. L. Miller, and J. E. Pessin. 2001. Differentiated 3T3L1 adipocytes are composed of heterogenous cell populations with distinct receptor tyrosine kinase signaling properties. J. Biol. Chem. 276, 15292-15297 https://doi.org/10.1074/jbc.M009684200
  27. Shimizu, M., F. Torti, and R. A. Roth. 1986. Characterization of the insulin and insulin-like growth factor receptors and responsitivitv of a fibroblast/adipocyte cell line before and after differentiation. Biochem. Biophys. Res. Commun. 137, 552-558 https://doi.org/10.1016/0006-291X(86)91246-5
  28. Siddals, K. W., M. Westwood, J. M. Gibson, and A. White. 2002. IGF-binding protein-1 inhibits IGF effects on adipocyte function: implications for insulin-like actions at the adipocyte, J. Endocrinol. 174, 289-297 https://doi.org/10.1677/joe.0.1740289
  29. Simons, K., and D. Toomre. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol. 1, 31-39 https://doi.org/10.1038/35036052
  30. Smith, P. J., L. S. Wise, R. Berkowitz, C. Wan, and C. S. Rubin. 1988. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J. Biol. Chem. 263, 9402-9408
  31. Smith, R. M., S. Harada, J. A. Smith, S. Zhang, and L. Jarett. 1998. Insulin-induced protein tyrosine phosphorylation cascade and signalling molecules are localized in a caveolin-enriched cell membrane domain. Cell Signal. 10, 355-362 https://doi.org/10.1016/S0898-6568(97)00170-8
  32. Song, K. S., S. Li, T. Okamoto, L. A. Quilliam, M. Sargiacomo, and M. P. Lisanti. 1996. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690-9697 https://doi.org/10.1074/jbc.271.16.9690
  33. Spiegelman, B. M., and J. S. Flier. 1996. Adipogenesis and obesity: rounding out the big picture. Cell 87, 377-389 https://doi.org/10.1016/S0092-8674(00)81359-8
  34. Summers, S. A., E. L. Whiteman, H. Cho, L. Lipfert, and M. J. Birnbaum. 1999. Differentiation-dependent suppression of platelet-derived growth factor signaling in cultured adipocytes. J. Biol. Chem. 274, 23858-23867 https://doi.org/10.1074/jbc.274.34.23858
  35. Vaziri, C., and D. V. Faller. 1996. Down-regulation of platelet-derived growth factor receptor expression during terminal differentiation of 3T3-L1 pre-adipocyte fibroblasts. J. Biol. Chem. 271, 13642-13648 https://doi.org/10.1074/jbc.271.23.13642
  36. Wada, T., T. Sasaoka, M. Funaki, H. Hori, S. Murakami, M. Ishiki, T. Haruta, T. Asano, W. Ogawa, H. Ishihara, and M. Kobayashi. 2001. Overexpression of SH2- containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5'-phosphatase catalytic activity. Mol. Cell. Biol. 21, 1633-1646 https://doi.org/10.1128/MCB.21.5.1633-1646.2001
  37. Whiteman, E. L., J. J. Chen, and M. J. Birnbaum. 2003. Platelet-derived growth factor (PDGF) stimulates glucose transport in 3T3-L1 adipocytes overexpressing PDGF receptor by a pathway independent of insulin receptor substrates. Endocrinology 144, 3811-3820 https://doi.org/10.1210/en.2003-0480
  38. Yuasa, T., R. Kakuhata, K. Kishi, T. Obata, Y. Shinohara. Y. Bando, K. Izumi, F. Kajiura, M. Matsumoto, and Y. Ebina. 2004. Platelet-derived growth factor stimulates glucose transport in skeletal muscles of transgenic mice specifically expressing platelet-derived growth factor receptor in the muscle, but it does not affect blood glucose levels. Diabetes 53, 2776-2786 https://doi.org/10.2337/diabetes.53.11.2776