DOI QR코드

DOI QR Code

Genetic Relationships between Gardenia jasminoides var. radicans and G. jasminoides for. grandiflora Using ISSR Markers

SSR을 이용한 꽃치자와 열매치자의 유전적 관계

  • Huh, Man-Kyu (Department of Molecular Biology, Dongeui University)
  • 허만규 (동의대학교 분자생물학과)
  • Published : 2007.01.29

Abstract

Inter simple sequence repeat (ISSR) markers were performed in order to analyse the genetic relation-ships of both taxa of Gardenia jasminoides var. radicans and G. jasminoides for. grandifora. Over the 88 fragments, only one locus (ISSR-11-05) was specific to G. jasminoides var. radicans and only one (ISSR-09-05) G. jasminoides for. grandiflora. Although G. jasminoides var. radicans showed low levels of alleles and Shannon's information index than G. jasminoides for. Grandiflora, however, there was not significant differences (p > 0.05). For both taxa the mean genetic diversity of natural populations was higher than that of cultivation populations. It was suggested that domestication processes via artificial selection do not have eroded the high levels of genetic diversity. ISSR markers were more effective in classifying natural populations of wild G. jasminoides in East Asia as well as cultivated G. jasminoides. The information about the phylogenetic relationship of G. jasminoides var. radicans and its closely related species is very valuable of the systematics of genus Gardenia, the origin of cultivated G. jasminoides, and future G. jasminoides breeding.

꽃치자(Gardenia jasminoides var. radicans)와 열매치자(C. jasminoides for. grandiflora)는 Gardenia속으로는 우리나라에 두 분류군밖에 없으며 열매치자는 약용, 식용, 꽃치자는 방향제로 쓰인다. 그런데 꽃이 지고 나면 형태적으로 구분이 거의 되지 않는다 ISSR분석으로 이들 종의 유전적 다양도와 집단구조를 실시하였다. 88개의 DNA 분절에서 한 분류군에만 나타나는 특이밴드가 탐지되었다. 한국의 세 야생 집단은 분리되어 있고 패치 분포를 보이지만 재배종에 비해 높은 유전적 다양성을 유지하친 있었다. 열매치자가 꽃치자보다 유전적 다양성이 높았으며 ISSR 마커로 이들 분류군이 잘 분리되었다. 또한 야생 집단이 재배 집단보다 다양성이 약간 높으나 유의성은 없었다. 이는 재배화과정에서 유전적 다양성의 일부 상실이 있었으나 인위적인 채취와 식재로 야생 집단과 재배 집단의 유전적 교류가 존재하였음을 시사한다.

Keywords

References

  1. Aldrich, P. R., J. Doebley, K. F. Schertz and A. Stee. 1992. Patterns of allozyme variation in cultivated and wild Sorghum bicolor. Theor. Appl. Genet. 85, 451-460
  2. Beebe, S., P. W. Skroch, J. Tohme, M. C. Duque, F. Pedraza and J. Nienhuis. 2000. Structure of genetic diversity among common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci. 40, 264-273 https://doi.org/10.2135/cropsci2000.401264x
  3. Bowman, K. D., K. Hutcheson, E. P. Odum and L. R. Shenton. 1971. Comments on the distribution of indices of diversity. Stat. Ecol. 3, 315-359
  4. Doebley, J. 1989. Isozymic evidence and the evolution of crop plants, pp. 46-72. In Soltis, D. E. and P.S. Soltis (eds.), Isozymes in plant biology. Dioscorides Press, Portland, Oreg. USA
  5. Esselman, E. J., L. Jiangquiang, D. J. Crawford, J. L. Winduss and A. D. Wolfe. 1999. Clonal diversity in the rare Calamagrosis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and their simple sequence repeat (ISSR) markers. Molecular Ecology 8, 443-451 https://doi.org/10.1046/j.1365-294X.1999.00585.x
  6. Excoffier, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131, 479-491
  7. Fang, D. Q. and M. L. Roose. 1997. Identification of closely related citris cultivars with inter-simple sequence markers. Theor. Appl. Genet. 95, 408-417 https://doi.org/10.1007/s001220050577
  8. Felsenstein, J. 1993. PHYLIP (Plyogeny Inference Package) version 3.5s. Distributed by the author. Department of Genetics, Univ, Washington, Seattle, USA
  9. Gallois, A., J. C. Audran and M. Burrus. 1998.Assessment of genetic relation ships and population discrimination among Fagus sylvatica L. by RAPD. Theor. Appl. Genet. 97, 211-219 https://doi.org/10.1007/s001220050887
  10. Godwin, I. D., E. A. B. Aiken and L. W. Smith. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18, 1524-1528 https://doi.org/10.1002/elps.1150180906
  11. Jiao, S. D. 2003. Ten Lectures of the Use of Medicinals. Paradigm Publications, Massachusetts, USA
  12. Kiang, Y. T. and M. B. Gorman. 1983. Soybean, pp. 295-328. In Tankley, S. D. and T. J. Orton (eds.), Isozymes in plant genetics and breeding, part A. Elsevier, Amsterdam
  13. Kimura, M. and T. Maruyama. 1971. Pattern of neutral polymorphism in geographically structured population. Genet. Res. 18, 125-133 https://doi.org/10.1017/S0016672300012520
  14. Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 6, 381-398
  15. McDermott, J. M. and B. A. McDonald. 1993. Gene flow in plant pathosystems. Ann. Rev. Phytopathy 31, 353-373 https://doi.org/10.1146/annurev.py.31.090193.002033
  16. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70, 3321-3323 https://doi.org/10.1073/pnas.70.12.3321
  17. Nei, M. and W. H. Li. 1979. Mathematical model for studying genetical variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 74, 5267-5273
  18. Ohnishi. O. 1998. Search for the wild ancestor of buckwheat ? The wild ancestor of cultivated common buckwheat, and of tatary buckwheat. Econ. Bot. 52, 123-133 https://doi.org/10.1007/BF02861199
  19. Paul, S. P., F. N. Wachira, W. Powell and R. Waugh. 1997. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94, 255-263 https://doi.org/10.1007/s001220050408
  20. Qian, W., S. Ge and D. Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102, 440-449 https://doi.org/10.1007/s001220051665
  21. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  22. Tani, N., N. Tomaru, Y. Tsumura, M. Araki and K. Ohba. 1998. Genetic structure within a Japanese stone pine (Pinus pumola Regal) population on Mt. Aino-dake in Central Honshu, Japan. J. Plant Res. 111, 7-15 https://doi.org/10.1007/BF02507145
  23. Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis

Cited by

  1. Development of polymorphic microsatellite markers in the medicinal plant Gardenia jasminoides (Rubiaceae) vol.58, 2015, https://doi.org/10.1016/j.bse.2014.11.009