DOI QR코드

DOI QR Code

Identification of catalytic acidic residues of levan fructotransferase from Microbacterium sp. AL-210

Microbacterium sp. AL-210이 생산하는 levan fructotransferase의 효소활성에 중요한 아미노산의 동정

  • Sung, Hee-Kyung (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Moon, Keum-Ok (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Choi, Ki-Won (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Choi, Kyung-Hwa (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Hwang, Kyung-Ju (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Kim, Myo-Jung (Food Research Institute and School of Food and Life Science, and Biohealth Products Research Center, Inje University) ;
  • Cha, Jae-Ho (Department of Microbiology, College of Natural Sciences, Pusan National University)
  • Published : 2007.01.29

Abstract

[ $\beta$ ]-Fructofuranosidases, a family 32 of glycoside hydrolases (GH32), share three conserved domains including the W(L/M)(C/N)DP(Q/N), FRDPK, and ECP(D/G) motifs. The functional role of the conserved acidic residues within three domains of levan fructotransferase, one of the $\beta-fructofuranosidases$, from Microbacterium sp. AL-210 was studied by site-directed mutagenesis. Each mutant was overexpressed in E. coli BL21(DE3) and purified by using Hi-Trap chelating affinity chromatography and fast performance liquid chromatography. Substitution of Asp-63 by Ala, Asp-195 by Asn, and Glu-245 by Ala and Asp decreased the enzyme activity by approximately 100-fold compared to the wild-type enzyme. This result indicates that three acidic residues Asp-63, Asp-195, and Glu-245 play a major role in catalysis. Since the three acidic residues are present in a conserved position in inulinase, levanase, levanfructotransferase, and invertase, they are likely to have a common functional role as nucleophile, transition state stabilizer, and general acid in $\beta-fructofuranosidases$.

당 분해효소의 family 32 (GH32)에 속하는 $\beta-fructofuranosidase$는 3차구조를 근거로 볼 때 W(L/M)(C/N)DP(Q/N), FRDPK, 그리고 ECP(D/G) 부위를 포함하는 세 군데의 보전적인 영역을 가지고 있다. 이러한 $\beta-fructofuranosidase$ family에 속하는 Microbacterium sp. AL-210 유래 levan fructotransferase (LFTase)의 보전적인 산성 아미노산들의 역할이 특정위치 돌연변이법으로 검사되었다. 각각의 돌연변이체는 대장균인 E. coli BL21 (DE3)균주에서 발현되어 대량 생산되었고, 금속 친화 크로마토그래피법과 FPLC법으로 순수 정제되었다. wild-type LFTase의 효소의 활성은 0.74 unit 인 반면 네 개의 돌연변이체인 D63A, D195N, E245A, E245D 각각은 specific activity를 측정해 본 결과 원 균주와 비교해서 약 100배 정도 감소한 효소활성을 보여 주었다. 이로써 아미노산 변형의 target이 되었던 Asp-63, Aps-195, 그리고 Glu-245가 모두 효소 활성 및 기질과의 결합에 상당히 중요한 역할을 하고 있음이 판명되었다. 이러한 세 부위의 산성 아미노산들은 inulinase, levan fructotransferase와 invertase에 모두 보전적으로 위치 하므로 이들은 $\beta-fructofuranosidase$ family내 에서 공통된 역할을 할 것으로 사료된다.

Keywords

References

  1. Alberto, F., C. Bignon, G. Sulzenbacher, B. Henrissat, and M. Czjzek. 2004. The three-dimensional structure of inertase (heta-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J. Biol. Chem. 279, 18903-18910 https://doi.org/10.1074/jbc.M313911200
  2. Batista, F. R., L. Hernandez, J. R. Fernandez, J. Arrieta, C. Menendez, R. Gomez, Y. Tanbara, and T. Pons. 1999. Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotrophicus levansncrase affects sucrose hydrolysis, but not enzyme specificity. Biochem. J. 337, 503-506 https://doi.org/10.1042/0264-6021:3370503
  3. Cha, J., N. H. Park, S. J. Yang, and T. H. Lee. 2001. Molecular and enzymatic characterization of a levan fructotransferase from Micobacterium sp. AL-210. J. Biotechnol. 91, 49-61 https://doi.org/10.1016/S0168-1656(01)00288-7
  4. Davies, G. and B. Henrissat. 1995. Structures and mechanisms of glycosyl hydrolases, Structure 15, 853-859
  5. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309-316 https://doi.org/10.1042/bj2800309
  6. Nagem, R. A. P., A. L. Rojas, A. M. Golubev, O. S. Korneeva, E. V. Eneyskaya, A. A. Kulminskaya, K. N. Neustrov, and I. Polikarpov. 2004. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J. Mol. Biol. 344, 471-480 https://doi.org/10.1016/j.jmb.2004.09.024
  7. Ozimek, L. K., S. A. F. T. van Hijum, G. A. Van Koningsveld, M. J. E. C. Van der Maarel, G. H. van Geel-Schutten, and L. Dijkhuizen. 2004. Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121. FEBS Lett. 560, 131-133 https://doi.org/10.1016/S0014-5793(04)00085-7
  8. Park, S., Y. Han, H. Kim, S. Song, T. B. Uhm, and K. S. Chae. 2003. Trp17 and Glu20 residues in conserved WMN(D/E)PN motif are essential for Aspergillus ficuum endoinulinase (EC 3.2.1.7) activity. Biochemistry 68, 658-661
  9. Reddy, A. and F. Maley. 1990. Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. J. Biol. Chem. 265, 10817-10820
  10. Reddy, A. and F. Maley. 1996. Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J. Biol. Chem. 271, 13953-13957 https://doi.org/10.1074/jbc.271.24.13953
  11. Saito, K., H. Goto, A. Yokota, and F. Tomita. 1997. Purification of levan fructotransferase from Arthrobacter nicotinovorans GS-9 and production of DFAIV from levan by the enzyme. Biosci. Biotechnol. Biochem. 61, 1705-1709 https://doi.org/10.1271/bbb.61.1705
  12. Saito, K and F. Tomita. 2000. Difructose anhydrides: their mass-production and physiological functions. Biosci. Biotechnol. Biochem. 64, 1321-1327 https://doi.org/10.1271/bbb.64.1321
  13. Saito, K., A. Yokota, and F. Tomita. 1997. Molecular cloning of levan fructotransferase gene from Arthrobacter nicotinovorans GS-9 and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 61, 2076-2079 https://doi.org/10.1271/bbb.61.2076
  14. Song, K. B., K. S. Bae, T. B. Lee, K. Y. Lee, and S. K. Lee. 2000. Characteristics of levan fructotransferase from Arthrobacter urefaciens K2032 and difructose anhydride IV formation from levan. Enz. Microb. Technol. 27, 212-218 https://doi.org/10.1016/S0141-0229(00)00135-6
  15. Song, D. D. and N. A. Jacques. 1999. Mutation of aspartic acid residues in the fructosyltransferase of Streptococcus salivarius ATCC 25975. Biochem. J. 344, 259-264 https://doi.org/10.1042/0264-6021:3440259
  16. Tanaka, K., T. Uchiyama, K. Yamauchi, U. Suzuki, and S. Hashiguchi. 1982. Formation of a di-d-fructose dianhydride from levan by Arthrobacter ureafaciens. Carbohydr. Res. 99, 197-204 https://doi.org/10.1016/S0008-6215(00)81911-4
  17. Verhaest, M., W. V. D. Ende, K. L. Roy, C. J. D. Ranter, A. V. Laere, and A. Rabijns. 2005. X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. Plant J. 41, 400-411 https://doi.org/10.1111/j.1365-313X.2004.02304.x
  18. Yanase, H., M. Maeda, E. Hagiwara, H. Yagi, K. Taniguchi, and K. Okamoto. 2002. Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase. J. Biochem. 132, 565-572 https://doi.org/10.1093/oxfordjournals.jbchem.a003258
  19. Yang, S. J., N. H. Park, T. H. Lee, and J. Cha. 2002. Expression, purification and characterization of a recombinant levan fructotransferase. Biotechnol. Appl. Biochem. 35, 199-203 https://doi.org/10.1042/BA20020008