Abstract
This paper is to establish an appropriate model for predicting the temperature decreases in the batch transferred from the refining process to the caster in steel-making companies. Mathematical modeling of the temperature decreases between the processes is difficult, since the reaction mechanism by which the temperature changes in a molten steel batch is dynamic, uncertain and complex. Three soft computing techniques are examined using the same data, namely the multiple regression, fuzzy regression, and neural net (NN) models. To compare the accuracy of these three models, a limited number of input variables are selected from those variables significantly affecting the temperature decrease. The results show that the difference in accuracy between the three models is not statistically significant. Nonetheless, the NN model is recommended because of its adaptive ability and robustness. The method presented in this paper allows the temperature decrease to be predicted without requiring any precise metallurgical knowledge.