Detection of Apoptosis by M30 Monoclonal Antibody in Non-small Cell Lung Carcinomas

비소세포 폐암에서 단클론항체 M30를 이용한 세포자멸사 측정

  • Kim, Gwang-Il (Department of Pathology, CHA General Hospital, CHA University) ;
  • Lee, Gun (Department of Thoracic and Cardiovascular Surgery, Bundang CHA General Hospital, CHA University) ;
  • Lim, Chang-Young (Department of Thoracic and Cardiovascular Surgery, Bundang CHA General Hospital, CHA University) ;
  • Lee, Hyeon-Jae (Department of Thoracic and Cardiovascular Surgery, Bundang CHA General Hospital, CHA University)
  • 김광일 (포천중문의과대학교 분당차병원 병리과) ;
  • 이건 (포천중문의과대학교 분당차병원 흉부외과) ;
  • 임창영 (포천중문의과대학교 분당차병원 흉부외과) ;
  • 이헌재 (포천중문의과대학교 분당차병원 흉부외과)
  • Published : 2007.02.05

Abstract

Background: Apoptosis plays a crucial role in carcinogenesis, as well as in development and tissue homeostasis. Terminal deoxyribonucleotidyl transferase mediated neck end labelling (TUNEL) and in situ nick end labelling (ISEL) have been used to investigate the apoptosis in tissues. Since the introduction of the M30 monoclonal antibody to overcome drawbacks of TUNEL and ISEL, the apoptosis in various tumors, with the exception of pulmonary carcinomas, has been studied. In this study, attempts were made to examine the correlation of apoptosis in non-small cell carcinomas, using both M30 and the expression of p53 protein, with the clinicopathological factors. Material and Method: Forty five patients with surgically resected non-small cell carcinomas were included. Immunohistochemical staining with M30 and p53 monoclonal antibody were peformed, and their expressions compared with the clinicopathological features. The overall survival time and recurrence-free survival time were calculated, and the factors influencing the survival time analyzed using a univariate analysis. The effects of the expression stati of M30 and p53 on the risks of cancer related to both death and recurrence were evaluated using a multivariate analysis. Result: The p53 positive group had many more M30 positive cells than the p53 negative group (p53 positive group; $61.7{\pm}26.8$ cells vs. p53 negative group; $45.6{\pm}29.6$ cells, p=0.005) and significantly more p53 positive patients showing at least 10 positive cells (apoptotic index, $Al{\ge}1$) on M30 staining (p53 positive group; 52.4% (11/21) vs. p53 negative group 16,7% (4/24), p=0.025). In the univariate analysis, the survival times in relation to smoking (pack-year), performance status (PS) and Al showed significant differences. The multivariate analysis demonstrated the relative risk (R.R) of cancer death increased almost 7.5-fold (R.R 7.482; 95% Cl $1.886{\sim}29.678$; p=0.004) and the risk of recurrence almost 3,8-fold (R.R 3.795; 95% Cl: $1.184{\sim}12.158$; p=0.025) in the high Al (${\ge}1$) compared to the low Al (<1) group. There was no prognostic effect of p53 expression on the survival time or risk of cancer death and recurrence. Conclusion: In non-small cell lung carcinomas, M30 immunohistochemistry was an excellent method for analyzing apoptosis; the high apoptotic index could be an adverse prognostic predictive factor.

배경: 종양 발생기전에 있어서 세포자멸사가 중요한 역할을 한다. 조직 내의 세포자멸사 측정은 TUNEL (terminal deoxyribonucleotidyl transferase mediated nick end lagbelling), ISEL (in situ nick end labelling) 등의 방법을 쓰지만, 반응 세포의 비특이성 및 결과 판독의 주관성 등이 논란의 대상이 되어왔다. 최근 이러한 단점을 보완할 수 있는 단클론항체 M30이 소개되어, 인체 조직의 대장암, 가슴 샘종, 유방암, 자궁내막암 등에서 M30 면역염색을 이용한 세포자멸사 연구가 있었으나 폐암에 대한 연구는 없었다. 저자들은 비소세포 폐암에서 M30 면역염색에 의해 발현되는 세포자멸사 양상이 세포주기 핵심조절자인 p53 면역염색 발현양상 및 임상양상과 갖는 연관성을 살펴보고자 하였다. 대상 및 방법: 비소세포 폐암으로 근치적 절제수술을 받은 환자 45명을 대상으로 하였다. M30과 P53 면역조직화학염색에 실시하여 각 항체의 발현양상과 임상 병리학적 특성을 비교 분석하였다. 술 후 생존기간과 무병 생존기간을 구하였고, 단변량 분석을 실시하여 생존기간에 영향을 미치는 인자를 알아보았다. 다변량 분석을 실시하여 M30과 p53 발현양상이 술 후 사망위험도 및 재발위험도에 미치는 영향을 알아보았다. 결과: M30 양성세포 수는 p53 양성군이 p53 음성군보다 유의하게 많았고(p53 양성군 $61.7{\pm}26.8$개 vs. p53 음성군 $45.6{\pm}29.6$개, p=0.005), 세포사멸사 지수가 1 이상(Apoptosis Index, $Al{\ge}1$)인 환자 수도 p53 양성군에서 유의하게 많았다(p53 양성군 52.4% (l1/21) vs. p53 음성군 16.7% (4/24), p=0.025). 단변량 분석에서는 흡연량, 활동도(Performance Status, PS), 그리고 AI가 술 후 생존기간에 유의한 차이를 보였다. 다변량 분석에서는 AI가 높은 군에서 수술 후 암사망 위험도(Relative risk, R.R 7.482; 95% Confidence Interval, CI $1.886{\sim}29.678$; p=0.004)와 재발 위험도(R.R 3.795; 95% CI $1.184{\sim}12.158$; p=0.025)가 유의하게 증가하였다. p53 발현양상은 수술 후 생존기간과 암사망 위험도 및 재발 위험도에 영향을 미치지 않았다. 결론: 이상의 연구에서 단클론 항체 M30을 이용한 면역조직화학염색이 비소세포 폐암의 세포자멸사를 관찰하는 데 매우 유용한 방법임을 확인하였으며, 환자의 예후를 예측하는 데에도 도움이 될 수 있음을 알 수 있었다.

Keywords

References

  1. Grimsley C, Ravichandran KS. Cues for apoptotic cell engulfment: eat-me, don't eat-me and come-get-me signals. Trends Cell Biol 2003;13:648-56 https://doi.org/10.1016/j.tcb.2003.10.004
  2. Steele RJ, Thompson AM, Hall PA, et al. The p53 tumour suppressor gene. Br J Surg 1998;85:1460-7 https://doi.org/10.1046/j.1365-2168.1998.00910.x
  3. Valerie K, Povirk LF. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 2003;22:5792-812 https://doi.org/10.1038/sj.onc.1206679
  4. Vousden KH, Prives C. p53 and prognosis: new insights and further complexity. Cell 2005;120:7-10
  5. Leers MP, Kölgen W, Björklund V, et al. Immunocytochemical detection and mapping of a cytokeratin 18 neoepitope exposed during early apoptosis. J Pathol 1999;187:567-72 https://doi.org/10.1002/(SICI)1096-9896(199904)187:5<567::AID-PATH288>3.0.CO;2-J
  6. Walker JA, Quirke P. Viewing apoptosis through a 'TUNEL'. J Pathol 2001;195:275-6 https://doi.org/10.1002/path.979
  7. Backus HHJ, Van Groeningen CJ, Vos W, et al. Differential expression of cell cycle and apoptosis related proteins in colorectal mucosa, primary colon tumours, and liver metastases. J Clin Pathol 2002;55:206-11 https://doi.org/10.1136/jcp.55.3.206
  8. Park SH, Kim HK, Kim H, Ro JY. Apoptosis in thymic epithelial tumors. Pathol Res Pract 2002;198:461-7 https://doi.org/10.1078/0344-0338-00283
  9. Fehm T, Becker S, Pergola-Becker G, et al. Presence of apoptotic and non apoptotic disseminated tumor cells reflect response to neoadjuvant systemic therapy (NST) in breast cancer. 2006;8(5):R60 [Epub ahead of print]
  10. Pijnenborg JMA, van de Broek L, Dam de Veen GC, et al. TP53 overexpression in recurrent endometrial carcinoma. Gynecol Oncol 2006;100:397-404 https://doi.org/10.1016/j.ygyno.2005.09.056
  11. Caulin C, Salvesen GS, Oshima RG. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J Cell Biol 1997;138:1379-94 https://doi.org/10.1083/jcb.138.6.1379
  12. Zochbauer-Muller S, Gazdar AF. Molecular pathogenesis of lung cancer. Annu Rev Physiol 2002;64:681-708 https://doi.org/10.1146/annurev.physiol.64.081501.155828
  13. Vousden KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer 2002;2:594-604 https://doi.org/10.1038/nrc864
  14. Shivapurkar N, Reddy J, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J Cell Biochem 2003;88:885-98 https://doi.org/10.1002/jcb.10440
  15. Törmänen U, Nuorva K, Soini Y, Pääkkö P. Apoptotic activity is increased in parallel with the metaplasia-dysplasia-carcinoma sequence of the bronchial epithelium. Br J Cancer 1999;79:996-1002 https://doi.org/10.1038/sj.bjc.6690159
  16. Hanahan D, Weinber RA. The hallmarks of cancer. Cell 2000;100:57-70 https://doi.org/10.1016/S0092-8674(00)81683-9
  17. Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr Mol Med 2003;3:631-42 https://doi.org/10.2174/1566524033479483
  18. Koornstra JJ, Rijcken FEM, de Jong S, Hollema H, de Vries EGE, Kleibeuker JH. Assessment of apoptosis by M30 immunoreactivity and the correlation with morphological criteria in normal colorectal mucosa, adenomas and carcinomas. Histopathol 2004;44:9-17 https://doi.org/10.1111/j.1365-2559.2004.01739.x
  19. Chen Y, Sato M, Fujimura S, et al. Expression of Bcl-2, Bax and p53 proteins in carcinogenesis of squamous cell lung cancer. Anticancer Res 1999;19:1351-6