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| An On-line Monitoring and
Control System for
Semiconductor Manufacturing
Process Utilizing Fuzzy Rule
Extraction

1 Introduction

The recent strides in semiconductor and TFT- LCD technology have
spawned enormous application possibilities. The manufacturing
processes of both are similar but the substrate materials are different. The
R&D results in these two products are compatible and can be applied
each other. In general, there are many factors which influence production
quality. Most of them can be adjusted by changing the recipe, which are
the manufacturing processes parameters of the working machines.

For the past years, engineers devote to find out appropriate and steady
processes for on-line real-time controlling recipe. Unfortunately, these
processes usually operate with complex and nonlinear reactions, and the
process parameters always drifting and varying (Jansen, 1990). Hence
development of on-line monitoring and control of parameters become
very important for these two industries.

In general, recipe adjustment is a trial and error method. However, the
manufacturing process is a very complicated nonlinear system. It is very
difficult to find out the relationship between the variation of process
parameters and product quality. For this reason, most advanced process
systems use the neural network to simulate the manufacturing process
model. The neural network can learn the knowledge from the process
data automatically. Although neural network performs well in many
applications, but it works as a black box that cannot make the decision
flow. Hence it is difficult for engineers to confirm the suggestion received
from the neural network. In the other hand, the expert system reasons
with the logic rules stored in the knowledge base, and it can explain the
reason of why it makes the decision. However, it is not easy to construct
knowledge base expert system (Jackson, 1999). To acquire the knowledge,
it is usually accomplished by a series of lengthy and intensive interviews
between a knowledge engineer, who is normally a computer specialist,
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and a domain expert who is able to articulate his
expertise to some degree.

A hybrid intelligence system was developed
(Chang et al, 2006) to simulate the plasma enhanced
chemical vapor deposition (PECVD) process by
combining the expert system with a neural network
technique. The expert system is used for on-line
inspection of manufacturing process and is set by
extracting out the Bolin Logic Rules (Chen et al,
2006; Andrews et al,, 1995). The process inputs and
outputs of the trained neural network can provide
reference to engineers for on-line recipe adjustment.
The hybrid intelligence system combines
advantages of both neural network and the expert
system, which can be learnt from training data and
explain the decision flow. The key of the system is
rule extraction algorithm. The algorithm is needed
to extract the knowledge of the trained neural
network model within symbolic rule format, and
then store the extracted rules to the knowledge base
expert system model. Hence, a rule extracted
algorithm called Bound Decomposition Tree (BDT)
is designed (Chen et al, 2006). Although the neural
network model is developed by using the on-line
manufacturing process parameters, the if-then logic
rule only provides a qualitative analysis of the
deposited membrane. Quantitative prediction of the
control of membrane thickness is still a problem.

A novel idea based on fuzzy logic technique is
presented here. The ration fuzzy rules between
input and output are extracted from neural network
with fuzzy rule extraction algorithm. The fuzzy
rules extraction method called Fuzzy Bound
Decomposition Tree (FBDT) algorithm is presented
in section 2, which is a very important part of the
hybrid intelligence system. Section 3 portrays
verification of the system with the real
manufacturing process data collected from the
deposition and etching machine respectively.

2. Fuzzy Rule Extraction
Method

2.1 Neural Network and Cube of Input Vectors

A neuron is an information processing unit that is
the fundamental component of a neural network
(Freeman and Skapura, 1992). A neuron has N
/XN
here x; is usually normalized to a value between 0
and 1. The normalized output of the neuron is y =
flu(x)), here f{ + ) is an specified active function and
f(u) = logsig(u) (Klir and Yuan, 1999). u(x)is
considered here as u(x)=3", wx; + wy = wx + wy,
, wy} is the weight vector, and

inputs and can be expressed as x = {xy, x,, ...

where w = {w;, w,, ...
w is the bias.

In general, the region of input x; can be sorted
and described with a fuizy sets Z,€[Zy, Zy, A,
Z;,), and each fuzzy set Z;; (i=1~N, j=1~m) hasa
corresponding fuzzy range [v;, v;!]. The value of
x; must fit in one of the sets, thatis 0 < vl < x; <
vi! < 1. Similarly, the output y of the neuron fits
in one set of a fuzzy sets ZYE[Zy, Zy, N, Z¥)],
and each fuzzy set Zv, (k = 1~p) has a fuzzy range
[oyl, vy U] with values of 0< vyl <y <oy U <
1. In addition, Z¥ is the fuzzy set corresponds to
Z¥ in u(x) domain, and it also has a fuzzy range
[owl , v ], where vyl = logsig-(vy,l) and vull =
logsig1(vy1).

A cube is a set which contains all input vectors of
x in a neuron and can be expressed as cube(w*),
where w* = {wy, wy, ... wy, wp) includes the weights
and bias of the neuron. The bound of a cube is the
maximum and minimum of #(x) in the cube and
can be shown as bound(cube(w*)) = [Lbound, Ubound],
where the lower bound (Lbound) is the minimum of
u(x) in the cube, and is equal to 2., . ., w; + wy; the
upper bound (Ubound) is the maximum of u(x) in
the cube, and isequal to D, ., w;+wy.

It is easy to find that the absolute maximum of

4 E ot



u(x) occurs at x; = 1, for this the weights w; get
positive value and x; = 0 for the weights wi is
negative, and the minimum of u(x) occurs at x; = 1
with w; is negative and x; = 0 with w; is positive.
Accordingly, the upper bound of the cube is the
sum of the bias w, and all w; with positive values;
and the lower bound of the cube is the sum of w,
and all w; with negative values.

In order to extract the fuzzy rules governing a
neuron to activate it, the cube of the neuron must be
continuously sorted into sub-cubes until the bound
values of all sub-cubes lie in between the fuzzy
range [vy, ", vy, ] in a certain fuzzy set Z,. That
means all inputs x of the cube will make the output
y of the neuron belongs to Z,k. In the present
research, x; is assigned to sort into certain ranges of
Zy~Zy,, so that the original cube is divided into m
sub-cubes, and each input of x; will be assigned to
fit in one set of the sets Z;. Similarly, each resultant
sub-cube can be sorted again and divided into
smaller sub-cubes by assigning x,. The smaller
subset of the sub-cube of input vectors can be
obtained with assignment of more xi terms into sub
cubes. A sub-cube of a cube is a subset of the input
vectors X in a neuron. When the first k terms of an

"input vector x; in a cube are sorted and assigned, a
sub-cube which undergoes k times sorting is
obtained and can be expressed as cube(w®, Z;Z, ...
Zy), where Z,Z, ... Z, are the related fuzzy sets of the
first assigned xi terms.

It is known that each sub-cube is a sub-set of the
input vector, and each sub-cube with different
inputs cause different values of u(x). The bound of a
sub-cube is the maximum and minimum of u(x) in
the sub-cube and can be written as

bound(cube(w”, Z,Z, ... Z}) ) = [Lbound , Ubound]

where the lower bound (Lbound) of the sub-cube
is the minimal u(x) in the sub-cube, and the upper
bound (Ubound) of the sub-cube is the maximal u(x)
in the sub-cube, i.e

K CETETETIR
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Lbound(cube(w*, 7,2, ... Z,)) 1)
= min{ux) x € cube(w*,Z,Z,...Z.)}

— 2 :‘ L j :‘ U
- v, W, + v, W+ E . w. +W0
:l,WjZO i :1,wj<0 i i j=k+l,wj<0 J

and
Ubound(cube(w*, 7,25 ... Z)) 2)
= max{iux)| x € cube(w*, 7Z,Z;.. 7))}

TR TS LR 3, +
. W, V. W, .
E:l,w]zovl i i=lw,<0 1 1 j:k+1,w120w1 Yo

The calculations of bounds via above equations
are tedious. Since the bounds of a cube is obtained
before the cube is divided into sub-cubes, a more
effective method to find out the new bounds of the
sub-cube can be achieved with a simpler calculation
from the original bounds of the cube. For any cube
cube(w*, Z,Z, ... Z;) with bounds of [Lboundk,
Uboundk], the bounds of the new sub-cube cube(w®,
Z,Z5 ... Z}Zy.1) with x4 sort can be obtained from

[Lbound, ,Ubound, ] = &)
[Lbound +v{., *w,.,.Ubound —(1-v{,, }* W,,,}, We, 20
[Lbound —(1-v{,)*w,.,,Ubound +V g * W, ] Wy <O

The above equations are simpler and hence the
values of the bounds of the subcube real time can be
obtained. Through the calculated values of the
bounds, some special cubes are defined as follows:
A sub-cube is called a certain cube if it's Lbound >
vl and Ubound < vuU. That means the output of
the neuron will always fit in the fuzzy range of the
set Zv, for all inputs of the cube; otherwise, a sub-
cube is an uncertain cube if it is not a certain cube.

Since a certain cube'’s bound range always fit in
the fuzzy range [ou,l , vu U] of Zy,, the fuzzy rule to
decide the output of a certain cube cube(w*, Z,Z, ...
Z;) can be described as "IF x, is assigned in Z; AND
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x, assigned in Z, AND ... AND x; assigned in Z,
then the output of the neuron falls in the range of
2y

22 Fuzzy Bound Decomposition Tree Algorithm
(FBDT)

Input : A neuron's weights and bias

Output : Extracted fuzzy rules of the neuron

Step 1. Set certain cube sets ¢, ~c, as empty
Set uncertain cube set as cube(w™)

Set rule sets r;~r, as empty

Step 2. Select a cube(w™), from uncertain cube set

Step 3. Divide the cube(w*), into m sub-cubes :
cube(w*), ; ~ cube(w*),,

Step 4. Calculate the bound of cube(w*), ; ~
cube(w*),,, with Eq. (3)

Step 5. Check cube(w*), ; ~ cube(w*),,, separately,
If the cube is a certain cube of Z¥, add it to
certain cube set ¢,

Else add it to uncertain cube set

Step 6. If the uncertain cube set is not empty go to
Step 2.

Step 7. For each certain cube sets ¢,

Transform each cube in ¢; into a rule and
insert it into the rule set r,..

Step 8. Then, each rule set ;, contains the rules
which make the neuron's output fit in the
range of ZY,.

2.3 Trust Value of Extracted Rules

With the above algorithm, it can extract rules
from a trained neural network. But it does not show
the importance of each rule. So, it needs to find out
the trust value of each extracted rule, and the basic
idea is that if the rule merges with the training data,
then it is trustable and important. The hamming
distance of a rule and training data can show how
close they are. The hamming distance HM of a rule
R=[ZR,ZR,...ZFn] and a data D=[ZD,ZD,...ZPn} is

0 JZR =0

NG

HM=%" 1 where }, —
2 : {abs(ZiR ~zP) ZF+#0

Then each rule and training data can be checked,
if their hamming distance is close enough (smaller)
and it can raise the rule's trust value. Thus the trust
value T of an extracted rule is

0 JHM > K

T=SN"¢, ¢ =
Z’zlm " {K—HM JHM <K ©)

where m is the amount of training data and Kis a
constant. If the hamming distance of a rule and data
is smaller than K (close enough), the trust value of
the rule will be increased.

3. Examples

Two examples are discussed here where the
manufacturing process data are collected from
etching and deposition machine. These data are
used to check the intelligence system and the results
are illustrated in the following subsections.

3.1 Deposition Manufacturing Process

3.1.1 The Training Data

The training data of the neural network are
collected from the CVDs' quality control (QC)
department of ChungHwa Picture Tubes (CPT).
1425 sets of records of raw data are collected from
PECVD machines, where 1000 sets of them are used
as the training data of the neural network. These
raw records contain 8 kinds of parameters, e.g.

x. IN Temperature

X OUT Temperature

x3. RF Power

x4 Pressure

6 HiOp



x5 Flow of Gas NH3
Xq- Flow of Gas SiH4
X7. Flow of Gas N2
xg. Reflect Power

These parameters are used as the inputs of the
training data, and the four values of membrane
thickness including average, maximum, minimum,
and uniformity are chosen as outputs of the training
data.

3.1.2 Establishment of Neural Network Model

As mentioned above, a neural network with 8
inputs and 4 outputs is developed and studied with
1000 sets training data. The neural network model is
generated with back-propagation network. After
training with those 1000 sets of training data,
another 425 inputs are used as test data to check the
precision of the trained neural network. Average
error for the average, maximum and minimum of
the predicted membrane thickness is shown in
Fig.1. It is observed that the predicted values are +

K Em:u-'ug; YT

A
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12.97 %, +8.95 %, and +10.97 %, corresponding to
the real values of membrane thickness +389 A, +
67.15 A, and +32.92 A, respectively. It can also
predict the uniformity of the membrane where the
test error is +6.96 %. Since all of the predicted
accuracies are approximately 90 %, this model can
be used for the following procedure of rule
extraction.

3.1.3 Extracted Rules from the Trained Network

After the neural network has been trained with
‘the training data, the fuzzy rule is used to monitor
and control of manufacturing process. The process
parameters are then extracted from the trained
neural network. Here each input is separated into 6
fuzzy zones [Z;, Zjy, ..., Z;s) according to the raw
data separately, and each output is separated into 5

fuzzy zomes [Zy), Z, ..., Zys] according to the

vl
measured membrane thickness. Using the above
FBDT algorithm, the difference in rules from each
output and fuzzy zones can be extracted. The

numbers of extracted rules from each output is

3600

L T T — —T T T T L
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- oy " o, o0 % A
3400 & Minimum Thickness Prediction 5 Aa. .A'. ) ”&%ﬁ O A $A' @b
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Fig. 1. The predicted results for maximun, minum, and average value of the membrane thckness.
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shown in Table 1. Although the amounts of the
extracted rules are large, the time for making
decision can be completed within few seconds via a
computer. Besides, we calculate the trust value of
each extracted rule using Eq. (4) & Eq. (5). The
expert system can infer the rules with the order of
trust value, so that it can increase the reason
efficiency which arise the trust of the expert
system's reason result. Based on these extracted
fuzzy rules, an expert system for on-line inspection
and control of process parameters can be designed.
For example, Table 2 shows the eight extracted rules
for the output of average of membrane thickness in
the zone of Zy; which has highest trust value. The
number in the table is the fuzzy zone for each input
and 0 means the state of "don't care". Accordingly,
rule R1 indicates:

"IF x, is in the 4th fuzzy state Z;, AND x; in the
1st fuzzy state Z
AND x, in the 5th fuzzy state Z,5 AND x; in the
4th fuzzy state Zs,
AND X, in the 4th fuzzy state Z,, AND xg in the
1st fuzzy state Zg;
THEN the average of membrane thickness will
be in the 3rd fuzzy state of Zv".

That is

"IF x, (IN Temperature) is between [282.5 283.5]
AND x4 (RF Power) is between [5700 5740]
AND x, (Pressure) is between [1790 1810] AND
x5 (Flow of Gas NH3) is between [4300 4386]
AND x, (Flow of Gas SiH4) is between [1340
1355] AND xg (Reflect Power) is between [0 5]
THEN maximum membrane thickness will be
between 2839~2918A".

Table 1. Numbers of extracted rules for each output.

Avg Max Min U
7y, 2061 9250 1267 12521
Zy, 4119 13224 4678 16154
Zyy 5508 14542 9019 14930
7y, 6398 14915 1096 19422
YA 2865 6935 4001 11739

Table 2, First eight extracted rules for the
control of average of membrane
thickness in the Z¥; state with biggest

trust values.

X[ X [ x3 | x¢ | x5 [ x| x» | Xg [ TrustValue
Rtj4 1|0 1 5141410 1 4833
R |3 |0 1 514141071 4708
R3|4|0f2]4]|4]4]0]|1 4378
R4 | 3| 0| 2|4 4|43 1 4167
R {510 1 5141410 1 3994
Re | 4|0 1 5174131071 3981
R7 1210 1 514714011 3974
RE| 3|0 1 514|540 1 3919

314 Accuracy of the Expert System

Based on these extracted rules, a quantitative
prediction of the membrane thickness is executed
and compared to the true data. The error rates
obtained for each output is shown in Table 3. It
shows that the current errors are from 10 % to 15 %.
This may be caused by the tilt of machine substrate
which can be resolved by adding a virtual
parameter into the system. Besides, some of the
training data are concentrated in a certain range;
which is not satisfactory for the generation of the
training model. This could be improved in the stage
of data collection.

Table 3. Prediction errors based on extracted
rules.

Minimun
13.88 %

Maximum

15.02 %

Uniformity
1072%

Average

12.18%

Errors

8 Eiot



32 Etching Process

The training data of the neural network are
collected from an ECR Etcher of DRAM industry. 99
sets of raw data are collected from the process
chamber in the ECR etcher machine. These original
raw data contain 8 parameters which are used as
the inputs of the training data for neural network
are:

X;. Process time (Step Time+over etching time,

sec)

X,. Gasl(scem) (Ar)

X3. Pressure(Pa)

X4 Mag RE Pf (w)

xs. Mag RF Pr(w)

x¢ Backside Pressure(Kpa)

x5. Circulator(C)

Xg. Block Temp(C')

70 sets of raw data are used as the training data of
the neural network, and fours values of etching

depth including average, maximum, minimum, and

3300
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standard deviation are chosen as the outputs of the
training data.

3.2.1 Establishment of Neural Network Model

As mentioned, 70 sets of raw data are used as the
training data, and the other 29 inputs are used as
test data. Figure 2 shows the average errors
obtained for the maximum, minimum and average
of the predicted etching depth are +14.32 %, +
12.66 %, and +12.62 %, corresponding to the real
values of depth +78.62 A, +71.66 A, and +68.65 A,
respectively. Since the predicted accuracies are
approximately 86 %, this model is acceptable to be
used in the rule extraction for etching process.

322 Extracted Rules from the Trained Network

Similarly, each input was separated into 6 fuzzy
zones [Zyy, Zyy, ..., Zig), and each output into 5 fuzzy
zones [Zyy, 79, ..., Z5s), the process parameters are
then extracted from the trained neural network. The
obtained numbers of extracted rules for each output
are shown in Table 4. Again, they can be reduced
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Fig. 2. The predicted results for maximun, minum, and average value of etching depth,
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with the thresholds of the trust value. Table 4 shows
the eight rules of the average of etching depth in the
Zy, state which has highest trust value. Based on
these extracted fuzzy rules, an expert system for on-
line inspection and control of process parameters
can be expected.

Table 4. First eight extracted rules for the
control of average of etching depth in
the Zv4 state,

Trust value
578
566
543
532
515
511
497
496

x
2
X
]
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g8 &
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g8 a

al ool ol || o
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Wl w| w|w|o ] w
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From Table 4, rule R1 indicates
"IF x, is in the 6th fuzzy state Z,4
AND x, in the 3rd fuzzy state Z,;
AND x; in the 1st fuzzy state Z,,
AND xg in the 2nd fuzzy state Zg,
THEN the average of etching deep will be in
the 3rd fuzzy state of Z,".

That s '
"IF x, (Process time) is between [61.78 63.1]
AND x4 (Mag Pf) is between [352.1 352.5]
AND x; (Circulator) is between [-20.2 -19.91]
AND x; (Block Temp) is between [99.41 99.83]
THEN the average etching deep will be
between 2929.6~30384".

323 Accuracy of the System

The prediction of the etching depth based on
these obtained extracted rules is executed and
compared with the neural network prediction and
true data. The resultant error rates for each output
are shown in Table 5. Similarly, it shows that the

current errors compare to true data are also roughly
from 10 % t0 15 %.

Table 5. Etching depth prediction errors.,

Errors Maximum | Minimum | Average STD
C ith NN
ompare v 83% | 77% | 83% | 18%
prediction
C ith tru
OmPail:;" © | 1475% | 1434% | 1333% | 103%

4. Conclusions

A fuzzy rule extraction algorithm based on
neural networks for the inspection and control of
manufacturing process in semiconductor and TFI-
LCD industries is presented. Two manufacturing
processes including deposition and etching were
operated and discussed. The current prediction
accuracy for membrane thickness and etching depth
is approximately 90 %. Therefore, the constructed
knowledge base system can provide a reference to
the engineers for recipe adjustments. At present the
manufacturing process control work must be
executed with the help of a computer since the
extracted fuzzy rules are too complicated. A more
effective condensed method will be developed in
future to reduce the number of rules, then the need
of real-time prediction and control of
manufacturing process could be expected.
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