THE REPRESENTATION AND PERTURBATION OF THE W-WEIGHTED DRAZIN INVERSE

  • Xu, Zhaoliang (Department of Information and Computing Science, Shanghai Maritime University) ;
  • Wang, Guorong (College of Mathematical Sciences, Shanghai Normal University)
  • 발행 : 2007.01.31

초록

Let A and E be $m{\times}n$ matrices and W an $n{\times}m$ matrix, and let $A_{d,w}$ denote the W-weighted Drazin inverse of A. In this paper, a new representation of the W-weighted Drazin inverse of A is given. Some new properties for the W-weighted Drazin inverse $A_{d,w}\;and\;B_{d,w}$ are investigated, where B=A+E. In addition, the Banach-type perturbation theorem for the W-weighted Drazin inverse of A and B are established, and the perturbation bounds for ${\parallel}B_{d,w}{\parallel}\;and\;{\parallel}B_{d,w}-A_{d,w}{\parallel}/{\parallel}A_{d,w}{\parallel}$ are also presented. When A and B are square matrices and W is identity matrix, some known results in the literature related to the Drazin inverse and the group inverse are directly reduced by the results in this paper as special cases.

키워드