DOI QR코드

DOI QR Code

Static Output Feedback Sliding Mode Control Design for Linear Systems with Mismatched Uncertainties

비정합 불확실성을 갖는 선형 시스템을 위한 정적 출력 궤환 슬라이딩 모드 제어기 설계

  • 최한호 (동국대학교 전기공학과)
  • Published : 2007.01.01

Abstract

We consider the problem of designing a static output feedback sliding mode control law for linear dynamical systems with mismatched uncertainties in the state matrix. We assume that an output dependent sliding surface guaranteeing the quadratic stability of the sliding mode dynamics is given, the reachability condition is not required to be satisfied globally, and the output feedback sliding mode control law complises both linear and discontinuous parts. We reduce the problem of designing the linear part of the sliding mode control law to a simple LMI problem which offers design flexibility for combining various useful convex design specifications. Our approach does not require state transformation and it can be applied to mismatched uncertain systems.

Keywords

References

  1. C. Edwards, 'A practical method for the design of sliding mode controllers using linear matrix inequalites,' Automatica., vol. 40, pp. 1761-1769, 2004 https://doi.org/10.1016/j.automatica.2004.05.004
  2. B. S. Heck, S. V. Yallapragada, and M. K. H. Fan, 'Numerical methods to design the reaching phase of output feedback variable structure control,' Automatica, vol. 31, pp. 275-279, 1995 https://doi.org/10.1016/0005-1098(94)00084-V
  3. C. Edwards and S. K. Spurgeon, Sliding Mode Control .Theory and Applications, PA : Taylor & Francis Inc., 1998
  4. C. M. Kwan, 'Further results on variable output feedback controllers,' IEEE Trans. Automat. Contr., vol. 46, pp. 1505-1508, 2001 https://doi.org/10.1109/9.948487
  5. C. Edwards, A. Akoachere, and S. K. Spurgeon, 'Sliding mode output feedback controller design using linear matrix inequalities,' IEEE Trans. Automat. Contr., vol. 46, pp. 115-119, 2001 https://doi.org/10.1109/9.898702
  6. C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its Applicatins, NY: Wiley, 1971
  7. S. Boyd, L. EI Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia : SIAM, 1994
  8. A. R. Galimidi and B. R. Barmish, 'The constrained Lyapunov problem and its application to robust output feedback stabilization,' IEEE Trans. Automat. Contr., vol, 31, pp. 410-419, 1986 https://doi.org/10.1109/TAC.1986.1104288