References
- Biggs, J. M., Introduction to Structural Dynamics, McGraw-Hill, New York, 1964, pp.3-26
- TM5-1300/AFR 88-2/NAVFAC P-39, Structures to Resist the Effects of Accidental Explosions, Joint Departments of the Army, Air Force and Navy Washington, DC, November, 1990, TMCD Version
- ASCE, Structural Design for Physical Security, State of the Practice, 1999, pp.4-1-4-48
- TM 5-855-1/AFPAM 32-1147/NAVFACP-1080/DAHS CWEMAN- 97, Design and Analysis of Hardened Structures to Conventional Weapons Effects, Joint Departments of the Army, Air Force, Navy and the Defense Special Weapons Agency, Washington, DC, December 1997
- Unified Facilities Criterion (UFC 4-010-01), DoD Minimum Antiterrorism Standards for Buildings, Washington, 31 July 2002
- LS-DYNA, Theoretical Manual, Hallquist, John O. (editor), Livermore Software Technology Corporation, Livermore, CA, May 1998, pp.16.8-16.11, 3.1-6.12
- LS-DYNA, Keyword Users Manual Version 970, Livermore Software Technology Corporation, April 2003, pp.20.l- 20.227
- Tavarez, F. A., Simulation of Behavior of Composite Grid Reinforced Concrete Beams Using Explicit Finite Element Method, Thesis of Master of Science, University of Wisconsin- Madison, 2001, pp.47-48
- Malvar, L. J., Crawford, J. E., Wesevich, J. W., and Simons, D., 'A Plasticity Concrete Material Model for DYNA3D', International Journal of Impact Engineering, Vol.19, No.9/ 10, 1997, pp.847-873 https://doi.org/10.1016/S0734-743X(97)00023-7
- Jones, N., Structural Aspects ofShip Collisions, Chapter II, in Structural Crashworthiness, Eds. N. Jones and T. Wierzbicki, Butterworths, London, 1983, pp.308-337
- Choi, H. and Krauthammer, T., 'Development of Progressive Collapse Analysis Procedure Considering Local Buckling Effects', The 1st International Conference on Design and Analysis of Protective Structures against Impact/ Impulsive/ Shock Loads (DAPSIL), Tokyo, Japan, Dec. 2003, pp.481 -488
- 정홍재, 섬유보강재의 특성을 고려한 콘크리트 슬래브의 폭발거동 해석, 연세대학교 석사학위논문, 2007, pp.36-69
- Kollar, L. P. and Springer, G. S., Mechanics of Composite Structures, Cambridge University Press, 2002, pp.14-19
- 남진원, 김호진, 이우철, 변근주, '폭발하중을 받는 콘크리트 벽체의 동적거동 해석', 대한토목학회 정기학술발 표대회 논문집, 2006, pp.2555-2558
- Byun, K. J., Nam, J. W., Kim, H. J., and Kim, S. B., 'Dynamic Analysis of Reinforced Concrete Wall under Blast Loading', Proceeding of 2nd ACF International Conference, Asian Concrete Federation, Bali, Indonesia, 20-21 November 2006, pp.180-186
- Belytschko, T. and Tsay, C. S., 'Explicit Algorithms for Nonlenear Dynamics of Shells', AMD-Vol.48, ASME, 1981, pp.209-231
-
Fyfe, Tyfo
${\circleR}$ SEH-51A Composit Using Tyfo${\circleR}$ S Epoxy, The Fibrwrap Company, Nancy Ridge Technology Center 6310 Nancy Ridge Drive, Suite 103, San Diego, CA 92121, 2005, www.fyfeco.com -
Fyfe,
$Tyfo^{\circleR}$ SCH-41S Composit Using$Tyfo^{\circleR}$ S Epoxy, The Fibrwrap Company, Nancy Ridge Technology Center 6310 Nancy Ridge Drive, Suite 103, San Diego, CA 92121, 2005, www.fyfeco.com - 연세대학교방호기술연구센터, 고성능 섬유복합재로 보강 된 철큰콘크리트 벽체의 방폭성능 평가, 2006, pp.45-49
- Karagozian & Case, RC Wall Pre-test Analysis, Technical Report submitted to Yonsei PROSTEC, Karagozian & Case, 2550 N. Hollywood Way Suite 500, Burbank, CA 91505, 2006, pp.13-67
- Patoary, M. K. H. and Tan, K. H., 'Blast Resistance of Prototype In-Build Masonry Walls Strengthened with FRP Systems', 6th International Symposium on FRP Reinforcement for Concrete Structures, Singapore, July 8-10, 2003, Vol.2, pp.1189-1198
Cited by
- Evaluating Impact Resistance of Externally Strengthened Steel Fiber Reinforced Concrete Slab with Fiber Reinforced Polymers vol.24, pp.3, 2012, https://doi.org/10.4334/JKCI.2012.24.3.293
- Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet vol.17, pp.3, 2013, https://doi.org/10.11112/jksmi.2013.17.3.001
- The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside vol.27, pp.4, 2014, https://doi.org/10.7734/COSEIK.2014.27.4.281
- Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures - vol.28, pp.2, 2015, https://doi.org/10.7734/COSEIK.2015.28.2.197
- Analytical study of failure damage to 270,000-kL LNG storage tank under blast loading vol.17, pp.2, 2016, https://doi.org/10.12989/cac.2016.17.2.201
- Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario vol.28, pp.6, 2016, https://doi.org/10.4334/JKCI.2016.28.6.673
- Analytical Assessment of Blast Damage of 270,000-kL LNG Storage Outer Tank According to Explosive Charges vol.28, pp.6, 2016, https://doi.org/10.4334/JKCI.2016.28.6.685
- Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion vol.25, pp.1, 2013, https://doi.org/10.4334/JKCI.2013.25.1.107
- Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet vol.26, pp.5, 2014, https://doi.org/10.4334/JKCI.2014.26.5.627
- Blast mitigation using FRP retrofitting and coating techniques vol.39, pp.5, 2016, https://doi.org/10.1002/pc.24116