DOI QR코드

DOI QR Code

As (v) immobilization in an aqueous solution by zerovalent iron under various environmental conditions

영가철(Zerovalent Iron)을 이용한 수용액 중 비소(V)의 불용화

  • Yoo, Kyung-Yoal (Testing and Analysis Team, Daegu Regional Korea Food & Drug Administration) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University) ;
  • Yang, Jae-E. (Department of Biological Environment, Kangwon National University)
  • 유경열 (대구지방식품의약품안전청 시험분석팀) ;
  • 옥용식 (강원대학교 자원생물환경학과) ;
  • 양재의 (강원대학교 자원생물환경학과)
  • Published : 2007.09.30

Abstract

Zerovalent iron (ZVI) has been widely used in the removal of environmental contaminants from water. The objective of this research was to assess the efficiency of ZVI for immobilization of As (V) in the contaminated water under various chemical conditions. Batch-type experiments showed that the immobilization process followed a first-order kinetic model. Rate constant (k) of the reaction increased consistently and proportionally as increasing ZVI concentrations from 1% (0.158 $hr^{-1}$) to 3% (0.342 $hr^{-1}$), and temperatures from $15^{\circ}C$ (0.117 $hr^{-1}$) to $35^{\circ}C$ (0.246 $hr^{-1}$), respectively. Whereas the rate constant decreased as increasing As (V) concentrations from 1 mg $\Gamma^{-1}$ (0.284 $hr^{-1}$) to 3 mg $\Gamma^{-1}$ (0.153 $hr^{-1}$), and the initial pH from 3 (0.393 $hr^{-1}$) to 9 (0.067 $hr^{-1}$), respectively. Results demonstrated that As (V) in an aqueous solution was rapidly immobilized by ZVI treatments. Zerovalent iron was fast method for remediation of As (V) contaminated water.

본 연구의 목적은 비소로 오염된 수질을 영가철(ZVI)을 이용하여 복원하는 과정에서 pH, 온도, 초기 비소농도, 영가철량 등 다양한 환경요인별 영가철 기술의 효율성을 평가하는데 있다. 영가철에 의한 비소의 불용화 반응은 일차반응속도를 따랐으며 반응상수(k)는 ZVI의 처리농도가 증가할수록(1%: 0.158, 2%: 0.257, 3%: 0.342 $hr^{-1}$), 그리고 반응온도가 높을수록($15^{\circ}C$: 0.117, $25^{\circ}C$: 0.202, $35^{\circ}C$: 0.246 $hr^{-1}$)증가하였다. 반면 비소의 불용화 반응은 초기 As(V)의 농도가 낮을수록(1 mg $\Gamma^{-1}$: 0.284, 2 mg $\Gamma^{-1}$: 0.202, 3 mg $\Gamma^{-1}$: 0.153 $hr^{-1}$), 그리고 반응 pH가 낮을수록(pH 3: 0.393, pH 5: 0.213, pH 7: 0.097, pH 9: 0.067 $hr^{-1}$)증가하였다. 이상의 연구 결과를 통하여 비소로 오염된 물에 다양한 환경조건(pH, 처리량, 오염물질의 농도, 반응온도) 하에서 영가철을 적용하기 위한 최적 인자를 도출하였다.

Keywords

References

  1. Yoo, K.R. (2003) Immobilization kinetics of arsenic (As) by zero-valent iron (ZVI). M.S. Thesis. Kangwon National University, Chuncheon, Korea. pp.1-46
  2. Alam, M.G.M., S. Tokumaga and T. Maekawa. (2001) Extraction of arsenic in a synthetic arsenicontaminated soil using phosphate. Chemosphere 43(8), 1035-1041 https://doi.org/10.1016/S0045-6535(00)00205-8
  3. Bang,S., Meng, X. and Bang, K W. (2003) A study of dissolved oxygen and pH effects on arsenate removal using zero-valent iron, J. Korean. Soc. Environ. Eng. 25(11), 1429-1435
  4. Losi, M. E., Amrhein C. and Frankenberger, W. T. (1994) Bioremediation of chromate-contaminated groundwater by reduction and precipitation in surface soils, J. Environ. Qual. 10, 1141-1150
  5. Ok, Y. S., Lim, S. and Kim, J. G. (2003) The application of dual function organoclay on remediation of toxic metals and organic compounds in soil-water system, Korean J. Environ. Agric. 22(3), 177-184 https://doi.org/10.5338/KJEA.2003.22.3.177
  6. Yang, J. E., Kim, J. S., Ok, Y. S., Yoo, K Y. (2007) Mechanistic evidence and efficiency of Cr (VI) reduction in water by different source of zerovalent irons, Water Sci. Technol. 55(1-2), 197-202
  7. Choi, S. H., Chang, Y. Y., Hwang, K Y., Khim, J. Y. (1999) Treatment of hazardous chemicals by nanoscale iron powder, J. KoSES 4(3), 85-93
  8. EPA. (1998) Permeable reactive barrier technologies for contaminant remediation, EPA OSWER, USA, EPA/600/R-98/125
  9. Yang, J. E., Skogley, E. O., Georgitis, S. J., Schaff, B. E. and Ferguson, A. H. (1991) Phytoavailability soil test: development and verification of theory, Soil Sci. Soc. Am. J. 55, 1358-1365 https://doi.org/10.2136/sssaj1991.03615995005500050027x
  10. Yang, J. E., and Skogley, E. O. (1992) Diffusion kinetics of multinutrient accumulation by mixedbed ion exchange resin, Soil Sci. Soc. Am. J. 56, 408-414 https://doi.org/10.2136/sssaj1992.03615995005600020011x
  11. Sparks, D. L. (1995) Environmental soil chemistry, Academic Press, USA. pp. 99-185
  12. Yang, J. E., Skogley, E. O., and Schaff, B. E. (1991) Nutrient flux to mixed-bed ion exchange resin: temperature effects, Soil Sci. Soc. Am. J. 55, 762-767 https://doi.org/10.2136/sssaj1991.03615995005500030021x
  13. Bae, B. (2000) The effects of environmental conditions on the reduction rate of TNT by $Fe_0$ , J. KoSES 5(2), 87-97
  14. Yoo, K. Y., Ok, Y. S. and Yang, J. E. (2006) Mechanism and adsorption capacity of arsenic in water by zero-valent iron. Korean J. Soil Sci. Fert. 39(3), 157-162
  15. Johnson, T. L., Scherer, M. and Tratnyek, P. (1996) Kinetics if halogenated organic compound degradation by iron metal, Environ. Sci. Technol. 30(8), 2634-2640 https://doi.org/10.1021/es9600901
  16. Yang, J. E. and Skogley, E. O. (1990) Copper and cadmium effects on potassium adsorption and buffering capacity, Soil Sci. Soc. Am. J. 54, 739-744 https://doi.org/10.2136/sssaj1990.03615995005400030019x
  17. Yang, J. E., Park, C. J., Kim, D. K., Ok, Y. S., Ryu, K. R., Lee, J. Y., and Zhang, Y. S. (2004) Development of mixed-bed ion exchange resin capsule for water quality monitoring, J. Korean Soc. Appl. Biol. Chem. 47(3), 344-350
  18. Yang, J. E. and Skogley, E. O. (1989) Influence of copper or cadmium on soil potassium availability properties, Soil Sci. Soc. Am. J. 53, 1019-1023 https://doi.org/10.2136/sssaj1989.03615995005300040005x
  19. Brookins, D. G. (1988) Eh-pH Diagrams for Geochemistry, Springer-Verlag, Berlin, p.200
  20. Yan, X. P., Kerrich, R. and Hendry, M. J. (2000) Distribution of arsenic (III), arsenic (V) and total inorganic arsenic in porewater from a thick till and clay-rich aquitard sequence. Saskatchewan, Canada, Geochim. Cosmochim. Acta 64, 2637-2648 https://doi.org/10.1016/S0016-7037(00)00380-X

Cited by

  1. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  2. Comparison of Bioavailability and Biological Transfer Factor of Arsenic in Agricultural Soils with Different Crops vol.47, pp.6, 2014, https://doi.org/10.7745/KJSSF.2014.47.6.518
  3. A Study on Mineralogical Characterizations of Sangdong Mine Tailings vol.51, pp.06, 2014, https://doi.org/10.12972/ksmer.2014.51.6.829