대하 Fenneropenaeus chinensis 집단의 AFLP 지문에 의한 유전 다양성 및 변이

Genetic Diversity and Variation of Chinese Shrimp Fenneropenaeus chinensis Populations as Inferred by AFLP Fingerprinting

  • 성용길 (순천향대학교 해양생명공학과) ;
  • 남윤권 (부경대학교 양식학과) ;
  • 한현섭 (국립수산과학원 생명공학연구소) ;
  • 방인철 (순천향대학교 해양생명공학과)
  • Sung, Yong-Gil (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Nam, Yoon-Kwon (Department of Aquaculture, Pukyong National University) ;
  • Han, Hyeon-Seob (Biotechnology Research Institute, National Fisheries Research and Development Institute) ;
  • Bang, In-Chul (Department of Marine Biotechnology, Soonchunhyang University)
  • 발행 : 2007.12.31

초록

우리나라 나로도, 태안, 영광 및 중국 보하이만에서 채집된 4개의 대하(Fenneropenaeus chinensis) 자연산 집단에 대한 유전학적 다양성 및 근연 관계를 AFLP 지문 분석을 통해 조사하였다. 5종의 primer 조합형을 이용한 AFLP 분석에서 각 집단으로 부터 $251{\sim}254$개의 bands를 얻어 분석한 결과, 집단내 다형 band의 출현 빈도는 4개 집단에서 $27.1{\sim}28.1%$로 유사하게 나타났고 이형접합율($0.1177{\sim}0.1288$)및 유전적 다양도($0.1099{\sim}0.1194$) 역시 4개 집단에서 동일한 수준을 보였다. Pairwise distance, 유전적 분화도(Fst index) 및 유전적 상동성 분석 역시 유사한 결과를 나타내어 본 연구에서 분석한 4개 대하 집단은 유전적으로 매우 밀접한 근연 관계를 나타내었고 특정 집단의 유전적 분화는 없는 것으로 판단되었다.

Genetic diversity among four populations of Chinese shrimp Fenneropenaeus chinensis from Narodo, Yeonggwang, Taean and Chinese Bohai Bay was assessed by amplified fragment length polymorphism (AFLP) DNA fingerprinting. Total numbers of AFLP bands generated (ranging from 251 to 254) and average percent of polymorphic bands (27.1 to 28.1 %) were similar in the four populations. Heterozygosity and genetic diversity within or among the populations were very low for the populations with average values ranging from 0.1177 to 0.1288 and from 0.1099 to 0.1194, respectively. Analyses of pairwise distance, Fst index and genetic similarity among the populations also revealed the similar results with very low genetic differentiation each other. These results suggest that all the wild populations tested in the present analysis may be belonging to the same genetic origin, and also that they may have a close relationship in genetic structure without any significant differentiation.

키워드

참고문헌

  1. Aarts, H. J., L. A. van Lith and J. Keijer, 1998. High-resolution genotyping of Salmonella strains by AFLP-fingerprinting. Lett. Appl. Microbiol., 26, 131-135 https://doi.org/10.1046/j.1472-765X.1998.00302.x
  2. Asahida, T., T. Kobayashi, K. Saitoh, I. Nakayama, 1996. Tissue preservation total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish. Sci., 62, 727-730 https://doi.org/10.2331/fishsci.62.727
  3. Blears, M. J., S. A. De Grandis, H. Lee and J. T. Trevors, 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. Ind. Microbiol. Biotechnol., 21, 99-114 https://doi.org/10.1038/sj.jim.2900537
  4. Hedgecock, D., M. L. Tracey and K. Nelson, 1982. Genetics. (in) L. G. Abelle and D. E. Bliss (eds.), The Biology of Crustacea. Academic Press, New York, pp. 283-403
  5. Jones, C. J., K. J. Edwards and S. Castaglione, 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breed., 3, 381-390 https://doi.org/10.1023/A:1009612517139
  6. Kim, C. S., Z. Kosuke, Y. K. Nam, S. K. Kim and K. H. Kim, 2007. Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol., 23, 242-246 https://doi.org/10.1016/j.fsi.2006.10.012
  7. Kim, Y. J., S. J. Jung and M. J. Oh, 2001. Investigation of the pathway of white spot syndrome virus (WSSV) infection. J. Fish Pathol., 14, 129-136
  8. Knorr, C., H. H. Cheng and J. B. Dodgson, 1999. Application of AFLP markers to genome mapping in poultry. Anim. Genet., 30, 28-35 https://doi.org/10.1046/j.1365-2052.1999.00411.x
  9. Li, Z., J. Li, Q. Wang., Y. He and P. Liu, 2006a. The effects of selective breeding on the genetic structure of shrimp Fenneropenaeus chinensis populations. Aquaculture, 258, 278-282 https://doi.org/10.1016/j.aquaculture.2006.04.040
  10. Li, Z., J. Li, Q. Wang., Y. He and P. Liu, 2006b. AFLP-based genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis. Aquaculture, 261, 463-472 https://doi.org/10.1016/j.aquaculture.2006.07.002
  11. Lim, H. J., J. H. Park and I. K. Jang, 2004. Effect of probiotics on water quality in the shrimp (Fenneropenaeus chinensis) pond. J. Kor. Fish. Soc., 37, 91-97
  12. Mackill, D. J., Z. Zhang, E. D. Renona and P. M. Colowit, 1996. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome, 39, 969-977 https://doi.org/10.1139/g96-121
  13. Mariette, S., D. Chagne, C. Lezier, P. Pastuszka, A. Raffin, C. Plomion and A. Kremer, 2001. Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite marker. Heredity, 86, 469-479 https://doi.org/10.1046/j.1365-2540.2001.00852.x
  14. Miller, M., 1997. Tools for population genetic analysis (TFPGA) 1.3: a windows programme for the sanalysis of allozyme and molecular population genetic data. Computer software distributed by author. Website address http://www.marksgeneticsoftware. net/tfpga.htm
  15. Nei, M and W. H. Li, 1979. Mathematical model for studing genetical variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci., 74, 5267-5273
  16. Osten, M., M. Den Bieman, M. T. R. Kuiper, M. Pravenec, V. Kren, T. W. Kurtz, H. J. Jacob, E. Lankhorst and B. F. M. Van Zutphen, 1996. Use of AFLP markers for gene mapping and QTL detection in the rat. Genomics, 37, 289-292 https://doi.org/10.1006/geno.1996.0562
  17. Park, J. Y and Y. Kim, 1995. The number of nucleotide substitutions per sites of mitochondrial DNA in the four pleuronectid species. J. Kor. Fish. Soc., 28, 649-658. (in Korean)
  18. Reineke, A and P. Karlovsky, 2000. Simplified AFLP protocol: replacement of primer labeling by the incorporation of alphalabeled nucleotides during PCR. Biotechniques, 28, 622-623
  19. Roa, A. C., M. M. Maya, M. C. Duque, J. Tohme, A. C. Allem and M. W. Bonierbale, 1997. AFLP analysis of relationships among cassava and other Manihot species. Theor. Appl. Genet., 95, 741-746 https://doi.org/10.1007/s001220050620
  20. Stefan S., D. Roessli and L. Excoffier, 2000. Arlequin ver. 2.000. A software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland
  21. Vos, P., R. Hodgers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau, 1995. AFLP, a new technique for DNA fingerprinting. Nuc. Acids Res., 23, 4407-4414 https://doi.org/10.1093/nar/23.21.4407
  22. Wang, W., H. Gao, J. Kong and Q. Wang, 2005. Genetic variation between Chinese shrimp populations from Korean South Sea and from Chinese cultured detected by AFLP markers. Gaojishu Tongxin/Chi. High Tech. Letters, 15, 81-86
  23. Wang, Z. Y., K. H. Tsoi and K. H. Chu, 2004. Applications of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp. Biochem. Syst. Ecol., 32, 399-407 https://doi.org/10.1016/j.bse.2003.10.006
  24. Waycott, M and P. A. G. Barnes, 2001. AFLP: a new technique for DNA fingerprinting. Nuc. Acids Res., 23, 4407-4414
  25. Wilson, G. M., W. K. Thomas and A. T. Beckenbach, 1987. Mitochondrial DNA analysis of Pacific northwest populations of Oncorhynchus tshawytscha. Can. J. Fish. Aquat. Sci., 44, 1301-1305 https://doi.org/10.1139/f87-153
  26. Wright, S., 1951. The genetic structure of populations. Ann. Eugen., 15, 313-354
  27. Wright, S., 1978. Evolution and genetics of populations: Variability within and among natural populations. University of Chicago Press, Chicago, 562 p
  28. 허성범, 김현준, 1996. 대하(Penaeus chinensis) 수정난의 부화에 미치는 수온과 염분의 영향. 한국수산학회지, 29, 1-8
  29. 황규린, 이영철, 장정순, 1997. 황해산 대하(Penaeus chinensis)의 계군분석을 위한 미토콘드리아 DNA 분석. J. Kor. Fish. Soc., 30, 88-94