루이보스 추출물의 항산화 활성, 성분 분석 및 엘라스테이즈 저해 효과

Antioxidative Activity, Component Analysis, and Anti-elastase Effect of Aspalathus linearis Extract

  • 박수남 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 양희정 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 원보령 (서울산업대학교 자연생명과학대학 정밀화학과) ;
  • 임영진 (의정부과학고) ;
  • 윤선경 (의정부과학고) ;
  • 지동환 (의정부과학고) ;
  • 최지연 (의정부과학고) ;
  • 한승주 (의정부과학고) ;
  • 이충우 (의정부과학고)
  • Park, Soo-Nam (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Yang, Hee-Jung (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Won, Bo-Ryoung (Department of Fine Chemistry, College of Nature and Life Science, Seoul National University of Technology) ;
  • Lim, Young-Jin (Uijeoungbu Science High School) ;
  • Yoon, Sun-Kyeong (Uijeoungbu Science High School) ;
  • Ji, Dong-Hwan (Uijeoungbu Science High School) ;
  • Choi, Jee-Yeon (Uijeoungbu Science High School) ;
  • Han, Seung-Joo (Uijeoungbu Science High School) ;
  • Lee, Chung-Woo (Uijeoungbu Science High School)
  • 발행 : 2007.12.30

초록

본 연구에서는 루이보스 추출물의 항산화, 성분 분석 및 elastase 저해 효과에 관한 조사를 수행하였다. 추출물의 free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) 소거활성($FSC_{50}$)은 50 % ethanol 추출물($11.50\;{\mu}g/mL$) < 당을 제거시킨 플라보노이드 aglycone 분획(8.47) < ethylacetate 분획(4.76) 순으로 증가하였다. Luminol-의존성 화학발광법을 이용한 $Fe^{3+}-EDTA/H_2O_2$ 계에서 생성된 활성산소종(reactive oxygen species, ROS)에 대한 루이보스 추출물의 총항산화능은 ethylacetate 분획 ($OSC_{50},\;4.58\;{\mu}g/mL$) < aglycone 분획(2.20) < 50% ethanol 추출물(1.09)순으로, 50 % ethanol 추출물에서 가장 큰 활성을 나타내었다. 루이보스 추출물에 대하여 rose-bengal로 증감된 사람 적혈구의 광용혈에 대한 억제 효과를 측정하였다. 루이보스 추출물의 경우 농도 의존적($1\;{\sim}\;100\;{\mu}g/mL$)으로 광용혈을 억제하였다. 특히 50 % ethanol 추출물은 $50\;{\mu}g/mL$ 농도에서 ${\tau}_{50}$이 273.00 min으로 매우 큰 세포보호 효과를 나타내었다. 루이보스 추출물 중 ethylacetate 분획의 당 제거 반응 후 얻어진 aglycone 분획은 TLC에서 3개의 띠로 분리되었으며, HPLC 실험(360 nm)에서 3개의 피이크로 분리되었다. 분리된 3가지 성분은 luteolin, quercetin 및 kaempferol이었으며, 그들의 성분비는 각각 18.24 %, 58.79 %, 22.97 %로 quercetin의 함량이 가장 큰 것으로 나타났다. 루이보스 추출물의 ethylacetate 분획의 TLC 크로마토그램은 7개의 띠로 분리되었고, HPLE 크로마토그램은 9개의 피이크를 보여주었다. TLC와 HPLC의 띠와 피이크를 확인한 결과, HPLC의 9개의 피이크는 용리순서로 peak 1 (조성비 14.71 %)은 isoorientin, peak 2 (28.84 %)는 orientin peak 3 (5.63 %)은 vitexin, peak 4 (12.73 %)는 rutin과 isovitexin, peak 5 (9.24 %)는 hyperoside, peak 6 (5.40%)은 isoquercitrin, peak 7 (1.48 %)은 luteolin, peak 8 (17.61 %)은 quercetin 및 peak 9 (4.59 %)는 kaempferol로 확인되었다. Aglycone 분획은 elastase 저해활성($IC_{50}$)이 $9.08\;{\mu}g/mL$로 매우 큰 활성을 나타내었다. 이상의 결과들은 루이보스 추출물이 $^1O_2$ 혹은 다른 ROS를 소광시키거나 소거함으로써 그리고 ROS에 대항하여 세포막을 보호함으로써 생체계, 특히 태양 자외선에 노출된 피부에서 항산화제로서 작용할 수 있음을 가리키며, 루이보스 성분에 대한 분석과 ethylacetate 분획의 당 제거 실험 후 얻어진 aglycone 분획의 큰 elastase 저해활성으로부터 주름개선 기능성 화장품원료로서 응용 가능성이 있음을 시사한다.

In this study, the antioxidative effects, inhibitory effects on elastase, and components of Aspalathus linearis extracts were investigated. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of extract/fractions of Aspalathus linearis were in the order: 50 % ethanol extract ($11.50\;{\mu}g/mL$) < deglycosylated flavonoid aglycone fraction ($8.47\;{\mu}g/mL$) < ethylacetate fraction ($4.76\;{\mu}g/mL$). Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of some Aspalathus linearis extracts on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The order of ROS scavenging activities were ethylacetate fraction ($OSC_{50},\;4.58\;{\mu}g/mL$) < deglycosylated flavonoid aglycone fraction ($2.20\;{\mu}g/mL$) < 50 % ethanol extract ($1.09\;{\mu}g/mL$). 50 % Ethanol extract showed the most prominent scavenging activity. The protective effects of extract/fractions of Aspalathus linearis on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The Aspalathus linearis extracts suppressed photohemolysis in a concentration dependent manner, particularly 50 % ethanol extract exhibited the most prominent celluar protective effect (${\tau}_{50}$, 272.00 min at $50\;{\mu}g/mL$). Aglycone fractions obtained from the deglycosylation reaction of ethylacetate fraction among the Aspalathus linearis extracts, showed 3 bands in TLC and 3 peaks in HPLC experiments (360 nm). Three components were identified as luteolin (composition ratio, 18.24 %), quercetin (58.79), and kaempferol (22.97). TLC chromatogram of ethylacetate fraction of Aspalathus linearis extract revealed 7 bands and HPLC chromatogram showed 9 peaks, which were identified as isoorientin (composition ratio, 14.71 %), orientin (28.84 %), vitexin (5.63 %), rutin and isovitexin (12.73 %), hyperoside (9.24 %), isoquercitrin (5.40 %), luteolin (1.48 %), quercetin (17.61 %) and kaempferol (4.59 %) in the order of elution time. The inhibitory effect of aglycone fraction on elastase ($IC_{50},\;9.08\;{\mu}g/mL$) was very high. These results indicate that extract/fractions of Aspalathus linearis can function as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. And component analysis of Aspalathus linearis extract and inhibitory activity on elastase of the aglycone fraction could be applicable to new functional cosmetics for smoothing wrinkles.

키워드

참고문헌

  1. J. C. Fantone and P. A. Ward, Role of oxygen-derived free radicals and metabolites in leukocyte dependent inflammatory reaction, Ann. J. Path., 107, 397 (1982)
  2. K. J. A. Davies, Protein damage and degradation by oxygen radical, J. Biol. Chem., 262, 9895 (1987)
  3. C. S. Foote, Photosensitized oxidation and singlet oxygen; consequences in biological systems, ed. W. A. Pryor, 2, 85, Acdemic press, New York (1976)
  4. S. N. Park, Ph. D. Dissertation, Seoul National Univ., Seoul, Korea (1989)
  5. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23, 75 (1997)
  6. S. N. Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes, Korean J. Food Sci. Technol., 35(3), 510 (2003)
  7. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003)
  8. K. Scharffetter-Kochanek, Photoaging of the connective tissue of skin: its prevention and therapy, antioxidants in disease mechanism and therapy, ed. H. Sies, 38, 639 (1997)
  9. R. M. Tyrrell and M. Pidoux, Singlet oxygen involvement in the inactivation of cultured human fibroblast by UVA and near visible radiations, Photochem. Photobiol., 49, 407 (1989) https://doi.org/10.1111/j.1751-1097.1989.tb09187.x
  10. G. F. Vile and R. M. Tyrrell, UVA radiation-induced oxidative damage to lipid and protein in vitro and in human skin fibroblasts is dependent on iron and singlet oxygen, Free Radical Biology & Medicine, 18, 721 (1995) https://doi.org/10.1016/0891-5849(94)00192-M
  11. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts, FEBS Lett., 331, 304 (1993) https://doi.org/10.1016/0014-5793(93)80357-Z
  12. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the ultraviolet A in induced synthesis of interstitial collagenase, J. Invest. Dermatol., 104, 194 (1995) https://doi.org/10.1111/1523-1747.ep12612751
  13. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Connective tissue alterations in skin exposed to natural and therapeutic UV-radiation, Photodermatology, 2, 15 (1985)
  14. A. Oikarinen and M. Kallioinen, A biochemical and immunohistochemical study of collagen in sun-exposed and protected skin, Photodermatology, 6, 24 (1989)
  15. L. H. Kligman, UVA induced biochemical changes in hairless mouse skin collagen: a contrast to UVB effects, ed. F. Urbach, 209, Valdemar, Overland Park (1992)
  16. J. W. Choi, S. I. Kim, J. Y. Kim, H. J. Yang, K. H. Lee, and S. N. Park, Antioxidative and cellular protective effects of Jeju native plant extracts against reactive oxygen species (I), J. Soc. Cosmet. Scientists Korea, 32(3), 181 (2006)
  17. J. W. Choi, S. I. Kim, S. M. Jeon, J. Y. Kim, H. J. Yang, K. H. Lee, and S. N. Park, Antioxidative and cellular protective effects of Jeju plant extracts against reactive oxygen species (I), J. Soc. Cosmet. Scientists Korea, 32(3), 181 (2006)
  18. H. J. Yang and S. N. Park, Evaluation of antioxidant potential of extract/fractions of Equisetum arense (I), J. Soc. Cosmet. Scientists Korea, 33(2), 61 (2007)
  19. H. J. Yang and S. N. Park, Component analysis and study on anti-elastase activity of Equisetum arense (II), J. Soc. Cosmet. Scientists Korea, 33(3), 139 (2007)
  20. S. M. Jeon, S. I. Kim, J. Y. Ahn, and S. N. Park, Antioxidtive potenties of extract/fractions of Suaeda asparagoides and Salicomia herbacea extracts (I), J. Soc. Cosmet. Scientists Korea, 33(3), 145 (2007)
  21. J. Y. Kim, H. J. Yang, K. H. Le, S. M. Jeon, Y. J. Ahn, B. R Won, and S. N. Park, Antioxidative and antiagiang effect of Jeju native plant extracts (II), J. Soc. Cosmet. Scientists Korea, 32(3), 181 (2006)
  22. J. F. Morton, Rooibos tea, Aspalathus linearis, a caffeinless, low-tannin berverage, Econ. Bot., 37(2), 164 (1983) https://doi.org/10.1007/BF02858780
  23. Y. Shindo and K. Kato, Effect of rooibos tea on some dermatological diseases, ISTS, 385 (1991)
  24. A. V. Gadow, E. Joubert, and C. F. Hansmann, Comparision of the antioxidant activity of rooibos tea (Aspalathus linearis) with green, oolong and black tea, Food chemistry, 60(1), 73 (1997) https://doi.org/10.1016/S0308-8146(96)00312-3
  25. E. Joubert, P. Winterton, T. J. Britz, and D. Ferreira, Superoxide anion and ${\alpha}\;,\;{\alpha}-diphenyl-{\beta}-picrylhydrazyl$ radical scavenging capacity of rooibos (Aspalathus linearis) aqueous extracts, crude phenolic fractions, tannin and flavonoids, Food Research International, 37, 133 (2004) https://doi.org/10.1016/j.foodres.2003.09.011
  26. L. Bramati, F. Aquilano, and P. Pietta, Unfermented rooibos tea: quantitative characterization of flavonoids by HPLC-UV and determination of the total antioxidant activity, J. Agric. Food Chem., 51, 7472 (2003) https://doi.org/10.1021/jf0347721
  27. L. Bramati, M. Minoggio, C. Gardana, P. Simonetti, P. Mauri, and P. Pietta, Quantitative characterization of flavonoid compounds in rooibos tea (Aspalathus linearis) by LC-UV/DAD, J. Agric. Food Chem., 50, 5513 (2002) https://doi.org/10.1021/jf025697h
  28. E. Joubert, HPLC quantification of the dihydro-chalcones, aspalathin and nothofagin in rooibos tea (Aspalathus linearis) as affected by processing, Food Chemistry, 55(4), 403 (1996) https://doi.org/10.1016/0308-8146(95)00166-2
  29. S. H. Kim, G. W. Nam, B. Y. Kang, H. K. Lee, S. J. Moon, and I. S. Chang, The effect of kaempferol, quercetin on hyaluronan synthesis stimulation in human keratinocytes (HaCaT), J. Soc. Cosmet. Scientists Korea, 33(1), 97 (2005)
  30. R. Fleischmajor, J. S. Perlish, and R. I. Bashey, Human dermal glucosaminoglycans and aging, Bio chem. Biophys. Acta., 279(2), 265 (1972) https://doi.org/10.1016/0304-4165(72)90142-0
  31. M. O. Longas, C. S. Russell, and X. Y. He, Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging, Carbohydr. Res., 159(1), 127 (1987) https://doi.org/10.1016/S0008-6215(00)90010-7