송사리 모델계에서 다이아지논 노출에 대한 생물 지표로서 알파 튜블린의 동정

The Identification of Alpha-Tubulin as a Biomarker for Diazinon Exposure in Medaka Fish

  • 김우근 (한국화학연구원 부설 안전성평가연구소 환경독성시험연구부) ;
  • 이성규 (한국화학연구원 부설 안전성평가연구소 환경독성시험연구부) ;
  • 전대수 (부산대학교 생명과학부) ;
  • 고성철 (한국해양대학교 건설.환경공학부) ;
  • 김정상 (경북대학교 동물공학과)
  • Kim, Woo-Keun (Environmental Toxicology Team, Korea Institute of Toxicology) ;
  • Lee, Sung-Kyu (Environmental Toxicology Team, Korea Institute of Toxicology) ;
  • Chon, Tae-Soo (Division of Biological Sciences, Pusan National University) ;
  • Koh, Sung-Cheol (Division of Civil and Environmental Systems Engineering, Korea Maritime University) ;
  • Kim, Jong-Sang (Department of Animal Science and Biotechnology, Kyungpook National University)
  • 발행 : 2007.12.31

초록

환경오염을 신속하게 모니터링하기 위한 생물지표의 개발은 증가하고 있는 오염의 심각성에 비추어 매우 중요한 과제로 여겨지고 있다. 본 연구에서는 독성물질처리에 의하여 선택적으로 발현이 조절되는 단백질의 동정을 통하여 독성물질에 대한 단백질 생물지표를 발굴하고자 시도하였다. 즉, 송사리(Oryzias latipes)를 유기인계 살충제인 다이아지논(diazinon)에 0, 0.1, 1, 5 mg/L 농도로 24시간 노출시킨 후, 머리와 몸통부분으로 나누어 단백질 발현패턴을 분석하였다. 본 시스템에서 다이아지논 처리에 의하여 유의적으로 발현이 증가된 단백질로서 alpha-tubulin, ribonuclease pancreatic precursor, protein hfq 등을 동정하였으며, 이 가운데 alpha-tubulin과 $hsp90{\beta}$의 발현이 다이아지논 농도에 의존적으로 증가하는 것을 semi-quantitative RT-PCR방법으로 확인하였다. 이와 같이 다이아지논 처리에 특이적으로 발현이 증가된 송사리 단백질들은 노출평가를 위한 생물지표로서 개발에 응용될 수 있을 것으로 평가된다.

키워드

참고문헌

  1. Chon TS, Chung N, Kwak IS, Kim JS, Koh SC, Lee SK, Leem JB and Cha EY. Movement behaviour of Medaka (Oryzias latipes) in response to sublethal treatments of diazinon and cholinesterase activity in semi-natural conditions, Environ Monit Assess 2005; 101: 1-21
  2. Dutta H, Marcelino J and Richmonds C. Brain acetylcholinesterase activity and optomotor behavior in bluegills, Lepomis macrochirus exposed to different concentrations of diazinon, Arch Int Physiol Biochim Biophys 1992; 100: 331-334 https://doi.org/10.3109/13813459209000721
  3. Eder KJ, Kohler HR and Werner I. Pesticide and pathogen: heat shock protein expression and acetylcholinesterase inhibition in juvenile Chinook salmon in response to multiple stressors, Environ Toxicol Chem 2007; 26: 1233-1242 https://doi.org/10.1897/05-462R2.1
  4. Gravel A and Vijayan MM. Non-steroidal anti-inflammatory drugs disrupt the heat shock response in rainbow trout, Aquat Toxicol 2007; 81: 197-206 https://doi.org/10.1016/j.aquatox.2006.12.001
  5. Greene NDE, Bamidele A, Choy M, de Castro SC, Wait R, Leung K-Y, Begum S, Gadian DG, Scott RC and Lythgoe MF. Proteome changes associated with hippocampal MRl abnormalities in the lithium pilocarpine-induced model of convulsive status epilcpticus, Proteomics 2007; 7: 1336-1344 https://doi.org/10.1002/pmic.200601027
  6. Hansen BH, Garmo OA, Olsvik PA and Andersen RA. Gill metal binding and stress gene transcription in brown trout (Salmo trutta) exposed to metal environments: the effect of pre-exposure in natural populations, Environ Toxicol Chem 2007; 26: 944-953 https://doi.org/10.1897/06-380R.1
  7. Iwama GK, Afonso LO, Todgham A, Ackerman P and Nakano K. Are hsps suitable for indicating stressed states in fish? J Exp BioI 2004; 207(Pt 1): 15-19 https://doi.org/10.1242/jeb.00707
  8. Kennedy S. The role of proteomics in toxicology: identification of biomarkers of toxicity by protein expression analysis, Biomarkers 2002; 7: 269-290 https://doi.org/10.1080/13547500210127318
  9. Kim JS, Koh SC, Lee S-K and Chon T-S. Regulation of acetylcholine esterase and neurotransmitters in Oryzias latipes by Diazinon, Kor J Environ Toxicol 1999; 14: 81-85
  10. Maradonna F and Carnevali O. Vitellogenin, zona radiata protein, cathepsin D and heat shock protein 70 as biomarkers of exposure to xenobiotics, Biomarkers 2007; 12: 240-255 https://doi.org/10.1080/13547500601070859
  11. Oh J, Pyo JH, Jo EH, Hwang SI, Kang SC, Jung JH, Park EK, Kim SY, Choi JY and Lim J. Establishment of a near-standard two-dimensional human urine proteomic map, Proteomics 2004; 4: 3485-3497 https://doi.org/10.1002/pmic.200401018
  12. Pan G and Dutta HM. The inhibition of brain acetylcholinesterase activity of juvenile largemouth bass Micropterus salmoides by sublethal concentrations of diazinon, Environ Res 1998; 79: 133-137 https://doi.org/10.1006/enrs.1998.3868
  13. Prendergast MA, Self RL, Smith KJ, Ghayoumi L, Mullins MM, Butler TR, Buccafusco JJ, Gearhart DA and Terry JR. AV. Microtubule-associated targets in Chloropyrifos oxon hippocampal neurotoxicity, Neuroscience 2007; 146: 330-339 https://doi.org/10.1016/j.neuroscience.2007.01.023
  14. Prijono WB and Leighton FA. Parallel measurement of brain acetylcholinesterase and the muscarinic cholinergic receptor in the diagnosis of acute, lethal poisoning by anti-cholinesterase pesticides, J.Wildl Dis 1991; 27: 110-115 https://doi.org/10.7589/0090-3558-27.1.110
  15. Rendell JL and Currie S. Intracellular localization of hsp90 is influenced by developmental stage and environmental estrogens in rainbow trout Oncorhynchus mykiss, Physiol Biochem ZooI 2005; 78: 937-946 https://doi.org/10.1086/432850
  16. Salas E, Alonso E, Sevillano J, Herradon G, Bocos C, Morales L, Ramos MP and Alguacil LF. Morphine differen- tially regulates hsp90beta expression in the nucleus accumbens of Lewis and Fischer 344 rats, Brain Res Bull 2007; 73: 325-329 https://doi.org/10.1016/j.brainresbull.2007.04.007
  17. Shin SW, Chung N-I, Kim J-S, Chon T-S, Kwon O-S, Lee S-K and Koh SC. Effect of diazinon on behavior of Japanese Medaka (Oryzias latipes) and gene expression of tyrosine hydroxylase as a biomarker, J Environ Sci Health-Part B 2001; 36: 783-795 https://doi.org/10.1081/PFC-100107412
  18. Yi C, Xie K, Song F, Yu L, Zhao X, Li G and Yu S. The changes of cytoskeletal proteins in plasma of acrylamideInduced rats, Neurochem Res 2006; 31: 751-757 https://doi.org/10.1007/s11064-006-9079-x
  19. Zarate J and Bradley TM. Heat shock proteins are not sensitive indicators of hatchery stress in salmon, Aquaculture 2003; 223: 175-187 https://doi.org/10.1016/S0044-8486(03)00160-1