유산균의 항균효과와 대식세포 활성화

Antibacterial Activity and Macrophage Activation of Lactic Acid Bacteria

  • 발행 : 2007.12.31

초록

유산균(Lactic acid bacteria)은 Escherichia coli와 Salmonella typhimurium과 같은 병원균에 항균 활성을 지니며 면역 증강효과를 나타내는 등 건강에 이로운 다양한 역할을 한다. 유산균에 의한 항균 효과는 E. coli와 S. typhiumurium에 대항하는 항균 활성으로 측정되어 졌으며, 면역 증강 효과는 유산균을 처리한 RAW264.7 대식세포의 활성화로 측정하였다. Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium bifidum의 E. coli와 S. typhimurium에 대한 항균활성은 9시간 이상 혼합 배양하였을 때 가장 좋은 항균효과를 나타내었고 E. coli와 S. typhiumurium 두 균주가 9시간 이후에는 모두 콜로니를 형성하지 않았다. RAW264.7 세포는 유산균에 의한 NO와 $TNF-{\alpha}$의 생성과 대식세포의 형태 변화를 알아보기 위한 대식세포로서 이용되었다. NO와 $TNF-{\alpha}$의 생성은 유산균을 처리한 RAW264.7세포의 24,48시간 배양 시 농도 의존적으로 증가하였고 대식세포의 형태 변화 역시 유산균에 의해 영향을 받았음을 확인할 수 있었다. 이를 통하여 (주)쎌바이텍으로부터 분양받은 유산균은 항균활성과 대식세포의 활성을 유도하여 면역을 증강시키는 효과를 지니고 있음을 in vitro 실험을 통해 확인하였다.

키워드

참고문헌

  1. Brackett RE. Microbial safety of chilled food; current issue, Trends Food Sci Technol 1992; 3: 81-85 https://doi.org/10.1016/0924-2244(92)90142-J
  2. Clancy RM, Amin AR and Abramson SB. The role of nitric oxide in inflammation and immunity, Arthritis Rheum 1998; 41: 1141-1151 https://doi.org/10.1002/1529-0131(199807)41:7<1141::AID-ART2>3.0.CO;2-S
  3. Coconnier MH, Lievin V, Hemery E and Servin AL. Antagonist activity Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB, Appl Environ Microbiol 1998; 64: 4573-4580
  4. Gomez E, Melgar MM, Silva GP, Portoles A and Gil I. Exocellular products from Bifidobacterium adolescentis as immunomodifiers in the Iymphoproliferative response of mouse splenocytes, FEMS Microbiol Lett 1988; 56: 47-52 https://doi.org/10.1111/j.1574-6968.1988.tb03148.x
  5. Harcher GE and Lambrecht RS. Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria, J Dairy Sci 1993; 76: 2485-2492 https://doi.org/10.3168/jds.S0022-0302(93)77583-9
  6. Herreros MA, Sandoval H, Gonzalez L, Castro JM, Fresno JM and Tornadijo ME. Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada Cheese (a Spanish goats' milk cheese), Food Microbiol 2005; 455-459
  7. Idris A, Mehari T and Ashenafi M. Some microbiological and biochemical studies on the fermentation of 'Awaze and 'Datta', traditional Ethiopian condiments, Int J Food Sci Nut 2001; 52: 5-14 https://doi.org/10.1080/09637480020027174
  8. Koga T, Mizobe T and Takumi K. Antibacterial activity of Lactobacillus species against Vibrio species, Microbio Res 1998; 153: 271-275 https://doi.org/10.1016/S0944-5013(98)80011-6
  9. Lee J, Ametani A, Enomoto A, Sato Y, Motoshima H, Ike R and Kaminogawa S. Screening for the immunopotentiating activity of food microorganisms and enhancement of the immune response by Bifidobacterium adolescentis M101-4, Biosc Biotech Biochem 1993; 57: 2127 -2132 https://doi.org/10.1271/bbb.57.127
  10. Link-Amster H, Rochat F, Saudan KY, Mignot O and Aeschlimann JM. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake, FEMS Immuno, Med Microbiol 1994; 10: 55-64 https://doi.org/10.1111/j.1574-695X.1994.tb00011.x
  11. Nigatu A and Gashe BA. Survival and growth of selected pathogens in fermented kocho (Enstete ventricosum), East Afr Med J 1994; 71: 514-518
  12. Niku-paavola ML, Laitila A, mattila-sandholm T and Haikara A. New types of antimicrobial compounds produced by Lactobacillus plantarum, J Appl Microbiol 1999; 86: 29-35 https://doi.org/10.1046/j.1365-2672.1999.00632.x
  13. Oshima H and Bartsch H. Chronic infections and inflammatory processes as cancer risk factors; possible role of nitric oxide in carcinogenesis, Mutal Res 1994; 305: 253-264, review https://doi.org/10.1016/0027-5107(94)90245-3
  14. Sekine K, Kasashima T and Hashimoto Y. Comparison of the TNF-$\alpha$ levels induced by human-derived Bifidobacterium longum and rat-derived Bifidobacterlium animalis in mouse peritoneal cells, Bifidobact Microfl 1994; 13: 79-89 https://doi.org/10.12938/bifidus1982.13.2_79
  15. Sekine K, Ohta J, Onishi M, Tatsuki T, Shimokawa Y, Toida T, Kawashima T and Hashimoto Y. Aanlysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis, Biol Pharm Bull 1995; 18: 148-153 https://doi.org/10.1248/bpb.18.148
  16. Snyder SH and Bredt DS. Biological roles of nitric oxide, Sci Am 1992; 266: 68-71
  17. Stuehr DJ and Nathan CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells, J Exp Med 1989; 169: 1543-1555 https://doi.org/10.1084/jem.169.5.1543
  18. Velraeds MMC, van der Mei H, Reid G and Busscher HJ. Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates, Appl Environ Microbiol 1996; 62: 1958-1963
  19. Vignolo GM, Suriani F, Holdago APDR and Oliver G. Antibacterial activity of Lactobacillus strains isolated from dry fermented sausages, J Appl Bacteriol 1993; 75: 344-349 https://doi.org/10.1111/j.1365-2672.1993.tb02786.x
  20. Vilcek J and Lee TH. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions, J BioI Chem 1991; 266: 7313-7316
  21. Wang BS, Chen JH, Liang YC and Duh PD. Effects of Welsh onion on oxidation of low density lipoprotein and nitric-oxide production in macrophage cell line RAW 264.7, Food Chem 2005; 91: 147-155 https://doi.org/10.1016/j.foodchem.2004.06.009
  22. Yasui H and Ohwaki M. Enhancement of immune response in Peyer's patch cells cultured with Bifidobacterium breve, J Dairy Sci 1991; 74: 1187-1195 https://doi.org/10.3168/jds.S0022-0302(91)78272-6
  23. Yasui H, Kiyoshima J and Ushijima H. Passive protection against rotavirus-induced diarrhea of mouse pups born to and nursed by dams fed Bifidobacterium breve YIT 4064, J Infect Dis 1995; 172: 403-409 https://doi.org/10.1093/infdis/172.2.403
  24. Yu HJ, Lee SS, Lee DS and Kim HB. Isolation of Lactobacillus plantarum HB1 from Tongchimi and its nitrite scavenging effect, Kor J Microbiol 2003; 39: 192-196