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Abstract
This paper presents a floating point unit(FPU) with 3 stages for a 3D graphics shader engine. It targeted to accelerate 3D 

graphics in portable device environments. In order to design a balanced architecture for a shader engine, we analyzed shader 
assembly instructions and estimated the performance of FPU with the method we propose. The proposed unit handles 4-
dimensional data through separated two paths that are lead to general operation module and special function module. The proposed 
FPU is compiled as a form of the cascade FPU with 3 stages to efficiently handle a matrix operation with relatively low hardware 
overhead.  Except some complex instructions that are executed using macro instructions, all instructions complete an operation in a 
single instruction cycle at 100MHz frequency. A special function module performs all operations in a single clock cycle using the 
Newton Raphson method with the look-up table. 
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I. INTRODUCTION 

3D computer graphics is used in many different areas of 
entertainment, education, health service, etc. In recent years, 
even portable devices provide multimedia service based on 
real time 3D graphics due to architectural innovation and rapid 
growth of semiconductor technology. The early stage of 3D 
graphics, all operations of 3D graphics was processed with 
CPU. 3D graphics needs complex operation for processing a 
lot of data. There is an excessive burden on a CPU. In order to 
reduce a bottle neck that occurred by operation of graphics on 
the CPU, hardware engineer developed the GPU which is used 
to process only graphics operations. Hardware acceleration for 
3D graphics using GPU allowed more various and realistic 
effects. Then two standard 3D programming interfaces 
emerged, such as OpenGL and Direct3D. Now programmers 
can access the functionality of GPU through that interface. 

 In modern GPUs, vertex shader and pixel shader are used 
to process geometry operation and pixel operation that is the 
most important part of the graphics pipeline. As a shader is 
used, a user is able to write a program that should be executed 
on the graphics hardware. It enables us to make a variety of 
graphics effects and handle data flexibly. These were 
impossible in fixed function pipeline [3].  

 
Vertex shader changes vertex attributes such as position, 

normal, vertex color, and texture coordinates. Pixel shader 
enables pixel lighting, NPR(Non photo realistic rendering), 
and bump mapping by changing pixel color. 

Figure 1. Example of Shader effect 
 
 A shader consists of registers and operating unit. A shader 

needs input register, output register, constant register, 
temporary register, and address register. Depending on the 
version of shader, several registers are added or subtracted. 
Operating unit is one of the most important parts for 
accelerating graphics. It is responsible for floating point vector 
operations. This paper describes a design of a floating point 
unit (FPU) with 3 stages for accelerating 3D graphics. Core 
precision is 24bit floating point referred IEEE 754. It should 
reduce area and power consumption. The proposed operating 
unit is compiled as a form of the cascade structure with 3 
stages with a SIMD architecture. It enables efficiently handle 
vector processing of 3D graphics. 4-floating point data are 
operated simultaneously in FPU. Designed FPU completes all 
operations in a single instruction cycle at 100MHz operating 
frequency, except some complex instructions that are executed 
using macro instructions. 
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II. SHADER INSTRUCTION ANALYSIS  

A. Functional change of shader 
At first, shader model 1.0 had been defined. Next, shader 

model was defined up to version 1.4. Most recently, shader 
model 4.0 of DirectX 10 was emerged on the back of the 
shader model 2, 3 of DirectX 9. Figure 2 shows major changes 
of shader up to shader model 3.0 [1]. 

 

Figure 2. Functional changes of shader 
In pixel shader model 2.0, an operating ability was 

improved in comparison with previous shader models.  

B. Classification of Shader instructions 
Shader assembly  instructions  are defined on Direct3D [1]. 

Direct3D is a standard of 3D programming interface. Table 1 
shows Functional classification of shader assembly 
instructions. 

 Arithmetic, special function, compare, setting, move and 
modifier instructions are directly related to the FPU’s 
operation. Arithmetic instruction performs a basic arithmetic 
operation and matrix operation. It consists of combination of 
multiplication and addition. Special function instructions 
perform special operations such as logarithm, exponential, 
reciprocal, and reciprocal square root. Special function unit 
performs full precision and partial precision instruction. 
Logarithm unit and exponential unit mostly perform an 
operation with color. In mobile environment, there is not 
enough difference that man can sense it. A logarithm unit and 
an exponential unit perform an operation with a Look-up table 
(LUT).  

 

TABLE 1 
CLASSIFICATION OF SHADER INSTRUCTIONS 

 
TABLE 2 

INSTRUCTION TYPE  AND EXECUTION STAGE 

 
Each unit uses a 160 byte LUT. Reciprocal unit and 

reciprocal square root unit is operated with 736byte and 
1Kbyte LUT each.  Compare instruction generates the 
comparison result. Setting instruction modifies an input value. 
Modifier affects the result of the instruction before it is written 
into the destination register or copy the source register 
component to any temporary register component. Instructions 
that require complex operation are performed using macro 
instructions.  

ALU related Instructions are classified into 3-groups 
according to the number of stages for the execution as shown 
in table 2. First group of Primitive type operations finish its  

operation in a single clock cycle. It needs 1-stage floating 
point unit. It is able to perform operations including addition, 
subtraction, multiplication, comparison, setting and move. 
Second group including MAD performs mixed addition and 
multiplication operation. Additional two adders are needed on 
1-stage floating point unit to finish 2-stage instructions with a  
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single instruction cycle. There is one more adder added on 2-
stage floating point unit to complete 3-stage instructions in a 
single instruction cycle. 2, 3 stage instructions are able to 
perform operations using macro instructions without 
additional adders. However, the run-time of program is 
increased comparing to the case with 2 or 3 stage floating 
point unit  

 
 

Figure 3. Execution stage and Trade-off  
 

According to the number of floating point unit’s execution 
stage, there are some trade-off between runtime, area, power 
consumption, and complexity of control. Performance of FPU 
with 1 stage is lowest. But its area is the small and control is 
relatively simple. FPU with 3 stages has an opposite 
characteristics. Hardware engineer have to design the 
hardware satisfying both balancing three factors and meeting 
the constraints simultaneously. 

 
In order to decide the execution stage of FPU that should be 

able to execute shader program efficiently, we estimate the 
influence of using macro instructions for 2, 3 stage instructions. 
In this case, M type and DP type instruction is divided into 2 
or 3 sub-instructions. It causes increasing runtime of the 

program. More memory space is required to keep the 
additional instructions. Also we compare a change of area 
according to the number of FPU’s stages. 

 

III. PIPELINE ANALYSIS 

A. Equation 
The following Equation is the approximation equations 

used in this study.  
 

RSP = RFI + NP + (NM*4) + (NDP*7) +  (SP*2) +  (SM*2) +  
(SDP*2)                         (1) 

 
Rx is the runtime that is a required clock cycle to finish a 

given type of operation. SP is a shader program. FI is a first 
instruction of a shader program. Table 3 shows required clock 
cycle to complete an operation and an additional clock cycle 
by stall of a given type of instruction. 

 

TABLE 3 
LATENCY OF INSTRUCTION 

 
NX is the number of type of instruction. Sx is the number of 

additional clock cycle by stall. It is defined according to the 
given type of instruction. 

We compute the number of clock cycle to estimate 
performance of FPU. Bump mapping and volume fog effect 
program are used. Figure 4 shows the result of comparison 
about changes of runtime according to the ratio of M type and 
DP type instructions. 

 
A designed adder for this study consists of about 3K gate 

equivalents. This number of gate is less than 10% of the  
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number of gate of FPU with 1 stages including special 
function unit (SF). The weight of adder’s area as compared 
with entire shader engine should be less than 3%. In contrast, 
runtime increases rapidly according to decreased stage of FPU 
as shown in Figure 4.  

 
Figure 4. Execution stage and Trade-off 

 

IV. PROPOSED FPU ARCHITECTURE 

In order to efficiently handle a matrix operation which is 
essential for the 3D graphics, it is necessary to optimize a dot 
product operation. There are 3 matrix instructions. DP3 
computes the three component dot product of the source 
registers. DP4 computes the four component dot product of the 
source registers. DPH computes homogeneous dot product of 
the source registers. These instructions require three or four 
multiplication and two or three addition. Following equations 
describe each instruction’s operation.   
 
 
DP3 
dest.x = dest.y = dest.z = dest.w = 
(SourceA.x * SourceB.x) + (SourceA.y * SourceB.y) +  
(SourceA.z * SourceB.z)         (1) 
 
DP4 
dest.x = dest.y = dest.z = dest.w = 
(SourceA.x * SourceB.x) + (SourceA.y * SourceB.y) + 
(SourceA.z * SourceB.z) + (SourceA.z * SourceB.w)        (2) 
 
DPH 
dest.x = dest.y = dest.z = dest.w = 
(SourceA.x * SourceB.x) + (SourceA.y * SourceB.y) + 
(SourceA.z * SourceB.z) + SourceB.w)         (3) 
 

Proposed FPU with 3 stages provides an effective 
architecture for a matrix operation with relatively low 
hardware overhead.  

 

Figure 5. FPU Architecture 
 

The process starts with the P type operation. Each 
component of source A and source B is entered into the first 
stage FPU. SF runs through the separated path with the unit 
for the general operation. It performs an operation using the 
Newton Rapson method. Designed SF performs both a full 
precision and a partial precision instruction. Because 
exponential unit and logarithm unit is mostly used to calculate 
relatively color, there is not enough visual difference that man 
can sense it. A logarithm unit and an exponential unit are 
designed with each 160 byte LUT. Reciprocal unit and 
reciprocal square root unit is designed with 736 byte and 1K 
byte LUT each.  

Next, either an output of first stage FPU or a component of 
source C is selected as each component’s input of second stage 
FPU.  Four adders perform an operation for M type and DP 
type instructions. Finally, two outputs of second stage 
instruction lead to an adder then the result of DP type 
instruction is generated. The FPU is implemented as shown in 
Figure 5.  

V. IMPLEMENTATION 

This section provides the synthesized results of the 
proposed FPU. Since the designed chip is targeted for 
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operating at 100MHz, the basic operating unit such as adder, 
multiplier, Exponential unit(SF_EXP), Logarithm 
unit(SF_LOG), Reciprocal unit(SF_Rcp), and Reciprocal 
square root unit(SF_RSQ) have to be synthesized to finish the 
given works within 10ns delay. The synthesized result for each 
component organizing the FPU is enumerated in the table 4. 

TABLE 4 
SYNTHESIZED RESULTS OF THE BASIC OPERATING UNITS 

 

VI. VERIFICATION 

We verified the FPU using a vertex shader engine. It is 
compatible with vertex shader model 1.1. The graphics 
performance of vertex shader using proposed FPU is 12.5M 
polygons/s at 100MHz operating frequency. Figure 6 and 
Figure 7 shows the result image. Figure 6 shows the sphere 
mapping image. Sphere mapping program uses DP type 
instructions and M type instructions. The used model consists 
of 21,458 vertices. Figure 7 shows the cartoon rendering 
image. Cartoon rendering image program consists of all type 
of instructions : DP4, DP3, MAX, ADD, MIN. The used 
model consists of 1197 vertices.  

 

VII. CONCLUSION 

We propose a design of a floating point unit with 3 stages 
for a 3D graphics shader engine, and present how to estimate 
the performance of FPU according to the number of stages. 
The proposed FPU is targeted for the shader in portable device 
environment which have limited power and small area. In the 
limited environment, system must meet tight cost, power 
consumption, and performance constraints [7]-[8]. It is 
difficult and important to balance these factors simultaneously. 
In order to design a balanced architecture for a shader engine, 
we define the group of shader instructions by the function and 
required stage of an operation, and propose a method that able 
to estimate the performance of FPU.  

FPU is compiled as a form of the cascade FPU with 3 
stages to efficiently handle a matrix operation, and it performs 
a SIMD floating point operations. FPU with 3 stages provide 
an effective architecture for matrix operations with relatively 
low hardware overhead. Special function instruction performs 
an operation using the Newton Raphson method with LUT. It 
completes an operation in a single clock cycle.  

Proposed floating point unit consists of 9 adders, 4 
multipliers, a logarithm unit, an exponential unit, a reciprocal 
unit, a reciprocal square root unit, and 4 setting and 
comparison logics. It uses 24bit floating point data with SIMD 
technology. Floating point unit is implemented with 0.25um 
CMOS technology and it takes about 60K gate count. FPU 
completes all operation of instructions in a single clock cycle 
at 100MHz operating frequency. The measured results clearly 
indicate the FPU is suitable for a shader engine of a portable 
device. 

 
 

 

Figure 6. Result of sphere mapping program 
 
 

 
 

Figure 7. Result of cartoon rendering program 
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