
230

논문번호 07-04-33

A design of a floating point unit with 3 stages for a 3D
graphics shader engine

Kwang-Yeob Lee*

Department of Computer Engineering, Seokyeong University

Abstract
This paper presents a floating point unit(FPU) with 3 stages for a 3D graphics shader engine. It targeted to accelerate 3D

graphics in portable device environments. In order to design a balanced architecture for a shader engine, we analyzed shader
assembly instructions and estimated the performance of FPU with the method we propose. The proposed unit handles 4-
dimensional data through separated two paths that are lead to general operation module and special function module. The proposed
FPU is compiled as a form of the cascade FPU with 3 stages to efficiently handle a matrix operation with relatively low hardware
overhead. Except some complex instructions that are executed using macro instructions, all instructions complete an operation in a
single instruction cycle at 100MHz frequency. A special function module performs all operations in a single clock cycle using the
Newton Raphson method with the look-up table.

Key-words : 3D Graphics, Shader, OpenGL ES2.0

I. INTRODUCTION

3D computer graphics is used in many different areas of
entertainment, education, health service, etc. In recent years,
even portable devices provide multimedia service based on
real time 3D graphics due to architectural innovation and rapid
growth of semiconductor technology. The early stage of 3D
graphics, all operations of 3D graphics was processed with
CPU. 3D graphics needs complex operation for processing a
lot of data. There is an excessive burden on a CPU. In order to
reduce a bottle neck that occurred by operation of graphics on
the CPU, hardware engineer developed the GPU which is used
to process only graphics operations. Hardware acceleration for
3D graphics using GPU allowed more various and realistic
effects. Then two standard 3D programming interfaces
emerged, such as OpenGL and Direct3D. Now programmers
can access the functionality of GPU through that interface.

 In modern GPUs, vertex shader and pixel shader are used
to process geometry operation and pixel operation that is the
most important part of the graphics pipeline. As a shader is
used, a user is able to write a program that should be executed
on the graphics hardware. It enables us to make a variety of
graphics effects and handle data flexibly. These were
impossible in fixed function pipeline [3].

Vertex shader changes vertex attributes such as position,

normal, vertex color, and texture coordinates. Pixel shader
enables pixel lighting, NPR(Non photo realistic rendering),
and bump mapping by changing pixel color.

Figure 1. Example of Shader effect

 A shader consists of registers and operating unit. A shader

needs input register, output register, constant register,
temporary register, and address register. Depending on the
version of shader, several registers are added or subtracted.
Operating unit is one of the most important parts for
accelerating graphics. It is responsible for floating point vector
operations. This paper describes a design of a floating point
unit (FPU) with 3 stages for accelerating 3D graphics. Core
precision is 24bit floating point referred IEEE 754. It should
reduce area and power consumption. The proposed operating
unit is compiled as a form of the cascade structure with 3
stages with a SIMD architecture. It enables efficiently handle
vector processing of 3D graphics. 4-floating point data are
operated simultaneously in FPU. Designed FPU completes all
operations in a single instruction cycle at 100MHz operating
frequency, except some complex instructions that are executed
using macro instructions.

* Dept. of Computer Engineering, Seokyeong University
※ This work was supported by "Nano IP/SoC Innovative
Promotion Group" and partially supported by "SoC Industry
Promotion Center" . We use tools supported by IDEC for an
FPGA implementation.
Manuscript received: Aug. 10, 2007 ; Accepted Nov. 06.2007

(358)

II. SHADER INSTRUCTION ANALYSIS

A. Functional change of shader
At first, shader model 1.0 had been defined. Next, shader

model was defined up to version 1.4. Most recently, shader
model 4.0 of DirectX 10 was emerged on the back of the
shader model 2, 3 of DirectX 9. Figure 2 shows major changes
of shader up to shader model 3.0 [1].

Figure 2. Functional changes of shader
In pixel shader model 2.0, an operating ability was

improved in comparison with previous shader models.

B. Classification of Shader instructions
Shader assembly instructions are defined on Direct3D [1].

Direct3D is a standard of 3D programming interface. Table 1
shows Functional classification of shader assembly
instructions.

 Arithmetic, special function, compare, setting, move and
modifier instructions are directly related to the FPU’s
operation. Arithmetic instruction performs a basic arithmetic
operation and matrix operation. It consists of combination of
multiplication and addition. Special function instructions
perform special operations such as logarithm, exponential,
reciprocal, and reciprocal square root. Special function unit
performs full precision and partial precision instruction.
Logarithm unit and exponential unit mostly perform an
operation with color. In mobile environment, there is not
enough difference that man can sense it. A logarithm unit and
an exponential unit perform an operation with a Look-up table
(LUT).

TABLE 1
CLASSIFICATION OF SHADER INSTRUCTIONS

TABLE 2

INSTRUCTION TYPE AND EXECUTION STAGE

Each unit uses a 160 byte LUT. Reciprocal unit and

reciprocal square root unit is operated with 736byte and
1Kbyte LUT each. Compare instruction generates the
comparison result. Setting instruction modifies an input value.
Modifier affects the result of the instruction before it is written
into the destination register or copy the source register
component to any temporary register component. Instructions
that require complex operation are performed using macro
instructions.

ALU related Instructions are classified into 3-groups
according to the number of stages for the execution as shown
in table 2. First group of Primitive type operations finish its

operation in a single clock cycle. It needs 1-stage floating
point unit. It is able to perform operations including addition,
subtraction, multiplication, comparison, setting and move.
Second group including MAD performs mixed addition and
multiplication operation. Additional two adders are needed on
1-stage floating point unit to finish 2-stage instructions with a

A design of a floating point unit with 3 stages for a 3D graphics shader engine 231

1.1 (Geforce3)
Extension of

texture
instruction

Pixel Shader

1.2, 1.3 (Geforce4)
General texture

instruction

1.4 (RADEON 8500)

Floating point
operation

2.0 (RADEON 9700)

Static flow
control

2.x (Geforce FX)

Dynamic flow
control

3.0 (Geforce 6 series)

1_1 (Geforce3)

Static flow
control

Vertex Shader

2.0 (RADEON 9700)

Dynamic flow
control

2.x (Geforce FX)

Read texture

3.0 (Geforce 6 series)

(359)

single instruction cycle. There is one more adder added on 2-
stage floating point unit to complete 3-stage instructions in a
single instruction cycle. 2, 3 stage instructions are able to
perform operations using macro instructions without
additional adders. However, the run-time of program is
increased comparing to the case with 2 or 3 stage floating
point unit

Figure 3. Execution stage and Trade-off

According to the number of floating point unit’s execution
stage, there are some trade-off between runtime, area, power
consumption, and complexity of control. Performance of FPU
with 1 stage is lowest. But its area is the small and control is
relatively simple. FPU with 3 stages has an opposite
characteristics. Hardware engineer have to design the
hardware satisfying both balancing three factors and meeting
the constraints simultaneously.

In order to decide the execution stage of FPU that should be

able to execute shader program efficiently, we estimate the
influence of using macro instructions for 2, 3 stage instructions.
In this case, M type and DP type instruction is divided into 2
or 3 sub-instructions. It causes increasing runtime of the

program. More memory space is required to keep the
additional instructions. Also we compare a change of area
according to the number of FPU’s stages.

III. PIPELINE ANALYSIS

A. Equation
The following Equation is the approximation equations

used in this study.

RSP = RFI + NP + (NM*4) + (NDP*7) + (SP*2) + (SM*2) +
(SDP*2) (1)

Rx is the runtime that is a required clock cycle to finish a

given type of operation. SP is a shader program. FI is a first
instruction of a shader program. Table 3 shows required clock
cycle to complete an operation and an additional clock cycle
by stall of a given type of instruction.

TABLE 3
LATENCY OF INSTRUCTION

NX is the number of type of instruction. Sx is the number of

additional clock cycle by stall. It is defined according to the
given type of instruction.

We compute the number of clock cycle to estimate
performance of FPU. Bump mapping and volume fog effect
program are used. Figure 4 shows the result of comparison
about changes of runtime according to the ratio of M type and
DP type instructions.

A designed adder for this study consists of about 3K gate

equivalents. This number of gate is less than 10% of the

232 전기전자학회 논문지(Journal of IKEEE) Vol. 11. No.4

(360)

number of gate of FPU with 1 stages including special
function unit (SF). The weight of adder’s area as compared
with entire shader engine should be less than 3%. In contrast,
runtime increases rapidly according to decreased stage of FPU
as shown in Figure 4.

Figure 4. Execution stage and Trade-off

IV. PROPOSED FPU ARCHITECTURE

In order to efficiently handle a matrix operation which is
essential for the 3D graphics, it is necessary to optimize a dot
product operation. There are 3 matrix instructions. DP3
computes the three component dot product of the source
registers. DP4 computes the four component dot product of the
source registers. DPH computes homogeneous dot product of
the source registers. These instructions require three or four
multiplication and two or three addition. Following equations
describe each instruction’s operation.

DP3
dest.x = dest.y = dest.z = dest.w =
(SourceA.x * SourceB.x) + (SourceA.y * SourceB.y) +
(SourceA.z * SourceB.z) (1)

DP4
dest.x = dest.y = dest.z = dest.w =
(SourceA.x * SourceB.x) + (SourceA.y * SourceB.y) +
(SourceA.z * SourceB.z) + (SourceA.z * SourceB.w) (2)

DPH
dest.x = dest.y = dest.z = dest.w =
(SourceA.x * SourceB.x) + (SourceA.y * SourceB.y) +
(SourceA.z * SourceB.z) + SourceB.w) (3)

Proposed FPU with 3 stages provides an effective
architecture for a matrix operation with relatively low
hardware overhead.

Figure 5. FPU Architecture

The process starts with the P type operation. Each
component of source A and source B is entered into the first
stage FPU. SF runs through the separated path with the unit
for the general operation. It performs an operation using the
Newton Rapson method. Designed SF performs both a full
precision and a partial precision instruction. Because
exponential unit and logarithm unit is mostly used to calculate
relatively color, there is not enough visual difference that man
can sense it. A logarithm unit and an exponential unit are
designed with each 160 byte LUT. Reciprocal unit and
reciprocal square root unit is designed with 736 byte and 1K
byte LUT each.

Next, either an output of first stage FPU or a component of
source C is selected as each component’s input of second stage
FPU. Four adders perform an operation for M type and DP
type instructions. Finally, two outputs of second stage
instruction lead to an adder then the result of DP type
instruction is generated. The FPU is implemented as shown in
Figure 5.

V. IMPLEMENTATION

This section provides the synthesized results of the
proposed FPU. Since the designed chip is targeted for

A design of a floating point unit with 3 stages for a 3D graphics shader engine 233

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70 80

3 STAGE

2 STAGE

1 STAGE

(2 / 3 stage Instruction ratio) / Number of Instruction (%)

ru
n

ti
m

e
 /

 3
 s

ta
g

e
 r

u
n

ti
m

e

(361)

operating at 100MHz, the basic operating unit such as adder,
multiplier, Exponential unit(SF_EXP), Logarithm
unit(SF_LOG), Reciprocal unit(SF_Rcp), and Reciprocal
square root unit(SF_RSQ) have to be synthesized to finish the
given works within 10ns delay. The synthesized result for each
component organizing the FPU is enumerated in the table 4.

TABLE 4
SYNTHESIZED RESULTS OF THE BASIC OPERATING UNITS

VI. VERIFICATION

We verified the FPU using a vertex shader engine. It is
compatible with vertex shader model 1.1. The graphics
performance of vertex shader using proposed FPU is 12.5M
polygons/s at 100MHz operating frequency. Figure 6 and
Figure 7 shows the result image. Figure 6 shows the sphere
mapping image. Sphere mapping program uses DP type
instructions and M type instructions. The used model consists
of 21,458 vertices. Figure 7 shows the cartoon rendering
image. Cartoon rendering image program consists of all type
of instructions : DP4, DP3, MAX, ADD, MIN. The used
model consists of 1197 vertices.

VII. CONCLUSION

We propose a design of a floating point unit with 3 stages
for a 3D graphics shader engine, and present how to estimate
the performance of FPU according to the number of stages.
The proposed FPU is targeted for the shader in portable device
environment which have limited power and small area. In the
limited environment, system must meet tight cost, power
consumption, and performance constraints [7]-[8]. It is
difficult and important to balance these factors simultaneously.
In order to design a balanced architecture for a shader engine,
we define the group of shader instructions by the function and
required stage of an operation, and propose a method that able
to estimate the performance of FPU.

FPU is compiled as a form of the cascade FPU with 3
stages to efficiently handle a matrix operation, and it performs
a SIMD floating point operations. FPU with 3 stages provide
an effective architecture for matrix operations with relatively
low hardware overhead. Special function instruction performs
an operation using the Newton Raphson method with LUT. It
completes an operation in a single clock cycle.

Proposed floating point unit consists of 9 adders, 4
multipliers, a logarithm unit, an exponential unit, a reciprocal
unit, a reciprocal square root unit, and 4 setting and
comparison logics. It uses 24bit floating point data with SIMD
technology. Floating point unit is implemented with 0.25um
CMOS technology and it takes about 60K gate count. FPU
completes all operation of instructions in a single clock cycle
at 100MHz operating frequency. The measured results clearly
indicate the FPU is suitable for a shader engine of a portable
device.

Figure 6. Result of sphere mapping program

Figure 7. Result of cartoon rendering program

234 전기전자학회 논문지(Journal of IKEEE) Vol. 11. No.4

(362)

REFERENCES
[1] Microsoft MSDN ASM Shader Reference

(http://msdn.microsoft. com/archive/en-
us/directx9_c_Aug_2005/directx/graphics/reference/
assemblyshaderlanguage/assemblyshaderlanguage.asp)

[2] Makoto Awaga(Fujitsu Limited), Tatsushi Ohtsuka,
Shigeru Sasaki(Fujitsu Laboratories Ltd.), 3D Graphics
Processor Chip Set. In December 1995 IEEE Micro.
37~45 page

[3] Erik Lindholm, Mark J Kilgard, Henry Moreton. A User-
Programmable Vertex Engine. In ACM SIGGRAPH
2001, 12-17 August 2001.

[4] Masatoshi Kameyama, et al, “ 3-D LSI core for
mobile phones – Z3D, “ Graphics Hardware,
pp.60-67, 2003

[6] Israel Koren, “ Computer Arithmetic Algorithms, ”
Prentice Hall, 1993

[7] Masatoshi Kameyama, Yoshiyuki Kato, Hitoshi Fuji-
moto, Hiroyasu Negishi, Yukio Kodama, Yoshitsugu
Inoue, Hiroyuki Kawai, “ 3D graphics LSI core for
mobile phone Z3D," Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pp.60 - 67, 2003

 [8] Kanako Yosida, Tadashi Sakamoto and Tomohiro Hase,
“A 3D Graphics Library For 32-bit Microprocessors For
Embedded Systems”, IEEE Trans. On Consumer
Electronis, Vol.44, pp.1107-1114, Aug.1998

Kwang Yeob Lee (Member)

K. Y. Lee studied electronics

e n g i n e e r i n g a t S o g a n g

University and Yonsei University

from 1979 to 1987. In 1994 he

received the Ph.D from the

Yonsei University. From 1989 to

1995, he was with Hyundai

Electronics as a designer of System LSI. During that

time, he was responsible for the design of

microcontroller. In 1995, he joined the Department

of Computer Engineering , Seokyeong University.

His research interests include Embedded System,

Mobile 3D Graphics Accelerator, SoC Design.

A design of a floating point unit with 3 stages for a 3D graphics shader engine 235

(363)

http://msdn.microsoft/

