DOI QR코드

DOI QR Code

팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료의 특성 평가

Study on Mechanical and Electrical Properties of Expanded Graphite/Carbon fiber hybrid Conductive Polymer Composites

  • 오경석 (포항공과대학교 기계공학과 대학원) ;
  • 허성일 (포항공과대학교 기계공학과 대학원) ;
  • 윤진철 (포항공과대학교 기계공학과 대학원) ;
  • 한경섭 (포항공과대학교 기계공학과)
  • 발행 : 2007.12.31

초록

본 연구에서는 팽창흑연/탄소섬유 혼합 보강 전도성 고분자 복합재료를 2단계 성형 공법으로 제조하였으며, 탄소섬유의 첨가가 전도성 고분자 복합재료의 전기적, 기계적 특성에 미치는 영향을 고찰하였다. 전도성 충진재들은 고분자 수지와 기계적으로 혼합되었으며 이를 통하여 복합재료가 전기적 특성을 가지도록 하였다. 팽창흑연은 입자 간 접촉 면적이 넓기 때문에 복합재료 내 전도성 네트워킹의 형성에 매우 유리하지만, 팽창흑연과 고분자 수지만을 사용하여 상기 공정으로 복합재료를 제조할 경우 우수한 기계적 강도를 얻기가 어렵다. 따라서 이를 보완하기 위하여 탄소섬유를 복합재료에 첨가하였으며 전기적 기계적 물성을 바탕으로 탄소섬유의 혼합 비율을 최적화하였다. 굽힘 강도는 탄소섬유의 충친 비율이 증가할수록 섬유에 의한 강화 효과에 의하여 증가 하지만, 32wt.% 이상에서는 오히려 감소하였다. 이는 여분의 탄소섬유들이 공극을 발생시켜 응력집중이 발생하기 때문으로 판단된다. 전기 전도도는 탄소섬유의 비율이 증가할수록 전도성 공백이 발생하고 팽창흑연의 전도성 네트워킹이 저해되기 때문에 계속 감소한다.

Expanded graphite/carbon fiber hybrid conductive polymer composites were fabricated by the preform molding technique. The conductive fillers were mechanically mixed with a phenol resin to provide an electrical property to composites. The conductive filler loading was fixed at 60wt.% to accomplish a high electrical conductivity. Expanded graphites were excellent in forming a conductive networking by direct contacts between them while it was hard to get the high flexural strength over 40MPa with using only expanded graphite and phenol resin. In this study, carbon fibers were added in composites to compensate the weakened flexural strength. The effect of carbon fibers on the mechanical and electrical properties was examined according to the weight ratio of carbon fiber. As the carbon fiber ratio increased, the flexural strength increased until the carbon fiber ratio of 24wt.%, and then decreased afterward. The electrical conductivity gradually decreased as the increase of the carbon fiber ratio. This was attributed to the non-conducting regions generated among the carbon fibers and the reduction of the direct contact areas between expanded graphites.

키워드

참고문헌

  1. M. Willinger, 'Industrial Development of Composite Materials: Toward a Functional Appraisal,' Composite Science and Technology, Vol. 34, 1989, pp. 53-71 https://doi.org/10.1016/0266-3538(89)90077-8
  2. D.J. Wang, j. Qiu, Z.L. Gui and L.T. Li, ''Design for High-performance Functional Composite Thermister Materials by Glass/ceramic Composing,' Journal of Material Research, Vol. 14, No.7, 1999, pp. 2993-2996 https://doi.org/10.1557/JMR.1999.0401
  3. Franklin T. Moutos, Lisa E. Freed and Farshid Guilak, 'A Biomimetic Three-dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage,' Nature Materials, Vol. 6, 2007, pp. 162-167 https://doi.org/10.1038/nmat1822
  4. J.F. Tressler, S. Alkoy, A. Dogan and R.E. Newnham, 'Functional Composites for Sensors, Actuators and Transducers,' Composites: Part A, Vol. 30, 1999, pp. 477-482 https://doi.org/10.1016/S1359-835X(98)00137-7
  5. M.Q. Zhang, G. Yu, H.M. Zeng, H.B. Zhang and Y.H. Hou, 'Two-Step Percolation in Polymer Blends Filled with Carbon Black, Macromolecules,' Vol. 31, 1998, pp. 6724-6726 https://doi.org/10.1021/ma9806918
  6. Wenge Zheng and Shing-Chung Wong, 'Electrical Conductivity and Dielectric Properties of PMMA/expaned Graphite Composites,' Composites Science and Technology, Vol. 63, 2003, pp. 225-235 https://doi.org/10.1016/S0266-3538(02)00201-4
  7. D. N. Busick and M.S. Wilson, 'Low-cost Composite Material for PEFC Bipolar Plates,' Fuel cells Bulletin, Vol. 2, No.5, 1999, pp. 6-8
  8. Richard H. J. Blunk, Daniel J. Lisi, Yeong-Eun Yoo and Charles L. Tucker III, 'Enhanced Conductivity of Fuel Cell Plates through Controlled Fiber Orientation,' AIChE Journal, Vol. 49, No.1, 2003, pp. 18-29 https://doi.org/10.1002/aic.690490104
  9. Hitoshi Yamada, Kazuki Morimoto, Katsuya Kusuno, Shiuichiro Wada and Kazuo Nishimoto, US patent 6500893, 31 December 2002
  10. S.l. Heo, J.C. Yun, K.S. on and K.S. Han, 'Influence of Particle Size and Shape on Electrical and Mechanical Properties of Graphite Reinforced Conductive Polymer Composites for the Bipolar Plate of PEM Fuel Cells,' Advanced Composite Materials, Vol. 15, 2006, pp. 115-126 https://doi.org/10.1163/156855106776829356
  11. S.W. Jung, J.H. Lee, J.B. Nam, H.W. Narn, and K.S.Han, 'Analysis of Strengthening Mechanism in Hybrid Short Fiber/Particle Reinforced Metal Matrix Composites,' Key Engineering Materials, Vols. 183-187, 2000, pp. 1297-1302
  12. 허성일, 윤진철, 오경석, 한경섭, '흑연입자/탄소섬유 혼합보강 전도성 고분자 복합재료의 전기적, 기계적 특성 연구,' 한국복합재료학회지, Vol. 19, No.2, 2006, pp. 7-12
  13. A. Muller, P. Kauranen, A. von Ganski and B. Hell, 'Injection Moulding of Graphite Composite Bipolar Plates,' Journal of Power Sources, Vol. 154, 2006, pp. 467-471 https://doi.org/10.1016/j.jpowsour.2005.10.096
  14. B.D. Cunningham, J. Huang and D.G. Baird, 'Development of Bipolar Plates for Fuel Cells form Graphite Filled Wet-lay Material and a Thermoplastic Laminate Skin Layer,' Journal of Power Sources, Vol. 165, 2007, pp. 764-773 https://doi.org/10.1016/j.jpowsour.2006.12.035
  15. S.l. Heo, K.S. Oh, J.C. Yun, S.H. Jung, Y.C. Yang and K.S. Han, 'Development of Preform Molding Technique using Expanded Graphite for PEM Fuel Cell Bipolar Plates,' Journal of Power Sources, Vol. 171, 2007, pp. 396-403 https://doi.org/10.1016/j.jpowsour.2007.05.110
  16. A. Celzard, J.F. Mareche and G. Furdin, 'Modelling of Exfoliated Graphite,' Progress in Materials Schience, Vol. 50, 2005, pp. 93-179 https://doi.org/10.1016/j.pmatsci.2004.01.001
  17. A. Celzard, J.F. Mareche and G. Furdin, 'Surface area of Compressed Expanded Graphite,' Carbon, Vol. 40, 2002, pp. 2713-2718 https://doi.org/10.1016/S0008-6223(02)00183-5
  18. Mahlon S. Wilson and Deanna N. Busick, US Patent 6,248,467, 19 June 2001
  19. A. Celzard, S. Schneider and J.F. Mareche, 'Densification of Exfoliated Graphite,' Carbon, Vol. 40, 2002, pp. 2185-2191 https://doi.org/10.1016/S0008-6223(02)00077-5