DOI QR코드

DOI QR Code

폐광산지역 토양 중금속원소들에 대한 통계학적 환경오염 특성평가

Statistical Assessment on the Heavy Metal Variation in the Soils around Abandoned Mine(Case Study for the Samgwang Mine)

  • 발행 : 2007.12.31

초록

Heavy metal concentrations in the soil were investigated for the abandoned Samkwang metal mine, Cheongyang-Gun, Chungnam Province, Korea. The concentrations of heavy metal(As, Cd, Cu, Ni, Pb, Zn) were determined in mine soils collected at the abandoned mine sites to obtain a general classification and specification of the pollution in this highly polluted region. The results estimated with the normal test and basis statistic on the central tendency and variation showed that the distribution of heavy metal concentration had significantly different at the range of all locations. The range of spatial distribution on the relationship of heavy metal concentration and pH was $4.8{\sim}8.8$ and heavy metal concentration on the type of land use was highest in forest land, and also Ni and Zn in farm and rice field showed the high concentration. The distribution of heavy metal concentration on the depth of a soil showed that the metal concentrations in subsoil were higher than of those in surface soil, while the concentration of Cu and Ni had no significant difference on the depth of soil. Results from the correlation analysis using the data except the extreme and unusual data revel that Zn-Cd(r=0.867), Zn-As(r=0.797), Zn-Pb(r=0.764), Cu-Cd(r=0.673), Cu-As(r=0.614) and Zn-Ni(r=0.605) were the most important parameters in assessing variations of heavy metal in soil. To discriminate pattern differences and similarities among samples, principal factor analysis(PFA) and cluster analysis(CF) were performed using a correlation matrix. This study suggests that PFA and CF techniques are useful tools for identification of important heavy metal and parameters. This study presents the necessity and usefulness of multivariate statistical assessment of complex databases in order to get better information about the quality of soil and gives the basis information to clean up the abandoned mine sites.

키워드

참고문헌

  1. Adriano D. C., 1986, Trace Elements in the terrestrial environment, Springer, New York
  2. McBride M. B., 1994, Environmental chemistry of soils, Oxford University Press, New York
  3. 장암, 김인수, 2000, 광산산성폐수에 함유된 중금속 처리를 위한 Chemical Fixation과 Bentonite의 흡착, 한국토양환경학회지, 5(2), 33-43
  4. 이철규, 전효택, 정명채, 2000, 다덕광산주변 농경지의 비소 및 중금속 오염과 계절적 변화, 한국자원공학회지, 37(1), 53-56
  5. Ana, P. Mucha, M. Teresa, S.D. Vasconcelos and Adriano A. Bordalo, 2005, Spatial and seasonal variations of the macrobenthic community and metal contamination in the Douro estuary(Portugal) 60, 531-550 https://doi.org/10.1016/j.marenvres.2004.12.004
  6. 정영욱, 민정식, 김인기, 김옥환, 이승길, 우종한, 최광호, 1997, 다덕광산 주변 토양에서의 금속 및 시안의 분포와 산성침출수 생성, 한국토양환경학회지, 2(3), 39-47
  7. 박천영, 박영석, 정연중, 1995, 광양광산 주변 토양이 중금속 오염에 관한 연구, 한국자원공학회지, 32, 163-174
  8. Borovec Z., 1996, Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment 177, 237-250 https://doi.org/10.1016/0048-9697(95)04901-0
  9. 이평구, 조호영, 염승준, 2004, 폐광산지역의 오염특성 조사와 평가를 위한 지구화학적 접근방법, 37(1), 35-48
  10. 전관수, 이철희, 원양수, 정진옥, 박병삼, 신덕구, 1999, 폐광산 주변 토양 및 하천의 중금속 함량, 한국환경과학회지, 8(2), 197-204
  11. Hakanson L., 1984, Sediment sampling in different aquatic environments: statistical aspects. Water Resources Reseach 20, 41-46 https://doi.org/10.1029/WR020i001p00041
  12. 정기호, 김문수, 정종학, 1996, 낙동강 하류 유역의 저니토, 토양, 잡초 및 채소 중의 중금속의 분포와 상관관계, 한국환경과학회지, 5(6), 801-812
  13. 박정숙, 김충모, 이미경, 2001, 전라남도 광산 주변에서 수확한 농산물의 미량금속 조사, 한국식품영향학회지, 14(2), 132-137
  14. 나춘기, 전서령, 1995, 모약 금은광산에 방치된 폐석이이 주변 수계 및 생태계에 미치는 환경적 영향, 자원환경지질, 28, 221-229
  15. 정용, 황만식, 양지연, 조성준, 1999, 납의 다경로 노출에 의한 건강위해성평가: 우리 나라 일부 지역 성인들을 대상으로, 한국독성학회지, 14(4), 203-216
  16. 이진수, 전효택, 김경웅, 김주용, 2003, 폐금속광 지역에서의 독성중금속에 대한 위해성 평가, 한국지구시스템공학회지, 40, 264-273
  17. 이진수, 전효택, 2004, 금속광산지역 독성 중금속원소들의 인체 위해성 평가, 자원환경지질, 37(1), 73-86
  18. John, M. K., Vanlaerhowven, C.J., and Chuach H.H., 1972, Factor affecting plant uptake and phytotoxicity of cadmium added soils. Environ. Sci. Technol. 6. 1005-1009 https://doi.org/10.1021/es60071a008
  19. 김경웅, 백성희, 이현구, 1995, 유구-광천 금은광 화대지역에서의 토양 및 농작물의 중금속오염, 자원환경지질학회지, 28, 389-394
  20. 폐광산 토양오염 실태조사(충남권역), 2005, 환경부
  21. 광산지역 광해조사 및 대책연구, 1997, 한국지질자원연구원
  22. 청양군통계연보, 2003, 청양군
  23. Davies J. C., Statistics and Data analysis in Geology (2nd Ed.), John Wiley & Sons, New York
  24. 이래테크, 2005, 시뮬레이션을 이용한 미래형 리스크 분석
  25. 이민희, 최정찬, 김진원, 2003, 고로페광산 주변 농경지 토양 및 하천 퇴적토의 중금속 오염분포 및 복원대책 설계, 자원환경지질, 36(2), 89-101
  26. 이영엽, 정재일, 권영호, 2001, 팔봉광산 선광광미와 주변토양의 중금속 오염특성, 자원환경지질, 34(3), 271-281
  27. Barona A., Romero F., 1996, Distribution of metals in soils and relationships among fractions by principal component analysis. Soil Technology 8, 303-319 https://doi.org/10.1016/0933-3630(95)00029-1
  28. Borovec Z., 1996, Evaluation of the concentrations of trace elements in stream sediments by factor and cluster analysis and the sequential extraction procedure. Science of the Total Environment, 177, 237-250 https://doi.org/10.1016/0048-9697(95)04901-0
  29. Kaiser H. F., 1958, The varimax criterion for analytic rotation in factor analysis, Psychometrika, 23, 187-200 https://doi.org/10.1007/BF02289233

피인용 문헌

  1. Spectral Responses of As and Pb Contamination in Tailings of a Hydrothermal Ore Deposit: A Case Study of Samgwang Mine, South Korea vol.10, pp.11, 2018, https://doi.org/10.3390/rs10111830