DOI QR코드

DOI QR Code

Effect of the LDC Buffer Layer in LSGM-based Anode-supported SOFCs

LSGM계 음극지지형 고체산화물 연료전지에 적용된 LDC 완충층의 효과

  • Song, Eun-Hwa (Materials Science & Technology Research Division, Korea Institute of Science and Technology) ;
  • Chung, Tai-Joo (School of Materials Science & Engineering, Andong National University) ;
  • Kim, Hae-Ryoung (Materials Science & Technology Research Division, Korea Institute of Science and Technology) ;
  • Son, Ji-Won (Materials Science & Technology Research Division, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kook (Materials Science & Technology Research Division, Korea Institute of Science and Technology) ;
  • Lee, Jong-Ho (Materials Science & Technology Research Division, Korea Institute of Science and Technology) ;
  • Lee, Hae-Weon (Materials Science & Technology Research Division, Korea Institute of Science and Technology)
  • 송은화 (한국과학기술연구원 재료기술연구본부) ;
  • 정태주 (안동대학교 신소재공학부) ;
  • 김혜령 (한국과학기술연구원 재료기술연구본부) ;
  • 손지원 (한국과학기술연구원 재료기술연구본부) ;
  • 김병국 (한국과학기술연구원 재료기술연구본부) ;
  • 이종호 (한국과학기술연구원 재료기술연구본부) ;
  • 이해원 (한국과학기술연구원 재료기술연구본부)
  • Published : 2007.12.31

Abstract

LSGM$(La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_{3-{\delta}})$ is the very promising electrolyte material for lower-temperature operation of SOFCs, especially when realized in anode-supported cells. But it is notorious for reacting with other cell components and resulting in the highly resistive reaction phases detrimental to cell performance. LDC$(La_{0.4}Ce_{0.6}O_{1.8})$, which is known to keep the interfacial stability between LSGM electrolyte and anode, was adopted in the anode-supported cell, and its effect on the interfacial reactivity and electrochemical performance of the cell was investigated. No severe interfacial reaction and corresponding resistive secondary phase was found in the cell with LDC buffer layer, and this is due to its ability to sustain the La chemical potential in LSGM. The cell exhibited the open circuit voltage of 0.64V, the maximum power density of 223 $mW/cm^2$, and the ohmic resistance of $0.17{\Omega}cm^2$ at $700^{\circ}C$. These values were much improved compared with those from the cell without any buffer layer, which implies that formation of the resistive reaction phases in LSGM and then deterioration of the cell performance is resulted mainly from the La diffusion from LSGM electrolyte to anode.

Keywords

References

  1. N. Q. Minh and T. Takahashi, 'Science and Technology of Ceramic Full Cells,' pp. 69-116, Elsevier, Amsterdam, 1995
  2. N.Q. Minh, 'Ceramic Fuel Cells,' J. Am. Ceram. Soc., 76 [3] 563-88 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  3. T. Ishihara, N. M. Sammes, and O. Yamamoto, 'Electrolytes,' pp. 83-118, in , Ed. by S.C. Singhal and K. Kendall, Elsevier, New York, 2003
  4. B.C.H. Steele, 'Ceramic Ion Conducting Membranes,' Current Opinion in Solid State & Materials Science, 1 [5] 684-91 (1996) https://doi.org/10.1016/S1359-0286(96)80052-0
  5. Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, and N. Imanishai, 'Electrical Conductivity of the $ZrO_2-Ln_2O_3$ System,' Solid State Ionics, 121 [1-4] 133-39 (1999) https://doi.org/10.1016/S0167-2738(98)00540-2
  6. T. Fukui, S. Ohara, K. Murata, H. Yoshida, K. Miura, and T. Inagaki, 'Performance of Intermediate Temperature Solid Oxide Fuel Cells with $La(Sr)Ga(Mg)O_3$ Electrolyte Film,' J. Power Sources, 106 [1-2] 142-45 (2002) https://doi.org/10.1016/S0378-7753(01)01026-6
  7. N.P. Brandon, S. Skinner, and B.C.H. Steele, 'Recent Advances in Materials for Fuel Cells,' Annu. Rev. Mater. Res., 33 183-213 (2003) https://doi.org/10.1146/annurev.matsci.33.022802.094122
  8. P.Huang, A. Horky, and A. Petric, 'Interfacial Reaction between Nickel Oxide and Lanthanum Gallate during Sintering and Its Effect on Conductivity,' J. Am. Ceram. Soc., 82 [9] 2402-406 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb02096.x
  9. Z.H. Bi, B.L. Yi, Z.W. Wang, Y.L. Dong, H.J. Wu, Y.C. She, and M.J. Cheng, 'A High-performance Anode-supported SOFC with LDC-LSGM Bilayer Electrolytes,' Electrochem. Solid St., 7 [5] A105-07 (2004) https://doi.org/10.1149/1.1667016
  10. T. Ishihara, H. Matsuda, and Y. Takita, 'Doped $LaGaO_3$ Perovskite Type Oxide as a New Oxide Ionic Conductor,' J. Am. Chem. Soc., 116 [9] 3801-803 (1994) https://doi.org/10.1021/ja00088a016
  11. M. Hrovat, A. Ahmad-Khanlon, Z. Samardzija, and J. Holc, 'Interactions between Lanthanum Gallate Based Solid Electrolyte and Ceria,' Mater. Res. Bull., 34 [12-13] 2027-034 (1999) https://doi.org/10.1016/S0025-5408(99)00220-2
  12. N. Maffei and G. de Silveira, 'Interfacial Layers in Tape Cast Anode-supported Doped Lanthanum Gallate SOFC Elements,' Solid State Ionics, 159 [3-4] 209-16 (2003) https://doi.org/10.1016/S0167-2738(02)00695-1
  13. A. Naoumidis, A. Ahmad-Khanlon, Z. Samardzija, and D. Kolar, 'Chemical Interaction and Diffusion on Interface Cathode/electrolyte of SOFC,' Fresenius' J. Anal. Chem., 365 [1-3] 277-81 (1999) https://doi.org/10.1007/s002160051488
  14. K.Q. Huang, J.H. Wan, and J.B. Goodenough, 'Increasing Power Density of LSGM-based Solid Oxide Fuel Cells using New Anode Materials,' J. Electrochem. Soc., 148 [7] A788-94 (2001) https://doi.org/10.1149/1.1378289
  15. F.W. Poulsen and N. van der Puil, 'Phase Relations and Conductivity of Sr-zirconates and La-zirconates,' Solid State Ionics, 53-56 777-83 (1992) https://doi.org/10.1016/0167-2738(92)90254-M
  16. Y.B. Lin and S.A. Barnett, 'Co-firing of Anode-supported SOFCs with thin $La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O_{3-{\delta}}$ electrolytes,' Electrochem. Solid St., 9 [6] A285-88 (2006) https://doi.org/10.1149/1.2191132
  17. T. Ishihara, H. Arikawa, T. Akbay, H. Nishiguchi, and Y. Takita, 'Nonstoichiometric $La_{2-x}GeO_{5-{\delta}}$ Monoclinic Oxide as a New Fast Oxide Ion Conductor,' J. Am. Chem. Soc., 123 [2] 203-09 (2001) https://doi.org/10.1021/ja0014537
  18. J.H. Wan, J.Q. Yan, and J.B. Goodenough, 'LSGM-based Solid Oxide Fuel Cell with 1.4W/$cm^2$ Power Density and 30 day Long-term Stability,' J. Electrochem. Soc., 152 [8] A1511-515 (2005) https://doi.org/10.1149/1.1943587
  19. W.Q. Gong, S. Gopalan, and U.B. Pal, 'Materials System for Intermediate-temperature (600-$800^{\circ}C$) SOFC Based on Doped Lanthanum-gallate Electrolyte,' J. Electrochem. Soc., 152 [9] A1890-895 (2005) https://doi.org/10.1149/1.1992478
  20. W.Q. Gong, S. Gopalan, and U.B. Pal, 'Performance of Intermediate Temperature (600-$800^{\circ}C$) Solid Oxide Fuel Cell Based on Sr and Mg Doped Lanthanum-gallate Electrolyte,' J. Power Sources, 160 [1] 305-15 (2006) https://doi.org/10.1016/j.jpowsour.2006.01.039
  21. K.-N. Kim, J. Moon, H. Kim, J.-W. Son, J. Kim, H.-W. Lee, J.-H. Lee, and B.-K. Kim, 'Effect of Interfacial Reaction Layer on the Electrochemical Performance of LSGM-based SOFCs(in Korean),' J. Kor. Ceram. Soc., 42 [10] 665-71 (2005) https://doi.org/10.4191/KCERS.2005.42.10.665