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ABSTRACT

An SOFC consists of all ceramic complex oxides each with different electrochemical-property requirements. These require-
ments, in principle, can be made met to a great extent by controlling or tailoring the defect structure of the oxide. This paper
reviews the defect structure, nonstoichiometry as a measure of the total defect concentration, and the defect relaxation kinetics of
complex oxides that are currently involved in a variety of growing applications today.
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1. Introduction

rystalline oxide materials have long garnered a vast

range of technological interest in optical, electrical,
magnetic, thermal, chemical, and electrochemical applica-
tions. They often comprise no less than three components in
at least than three sublattices, and tend to be even more
complex in terms of the number of components and sublat-
tices. The simplest examples may be those with a perovskite
structure (ABO,) or a spinel structure (AB,O,).

For all applications of complex oxides, knowledge and con-
trol of their defect structure is essential to endow them with
their necessary functions as well as to design and/or opti-
mize the processing route of relevant devices. By the defect
structure, we mean the types, concentrations and spatial
distributions of mainly point defects. For the best electro-
chemical performance of an SOFC electrode oxide, for exam-
ple, the oxide should be defect-chemically processed to have
as high an oxide ionic conductivity as possible while sup-
pressing cationic mobility as much as possible, in addition
to a sufficiently high level of electronic conductivity.
Another example may be positive temperature coefficient
resistors (PTCR) based on BaTiO,: the interior of BaTiO,
grains should be made n-type semiconducting by doping
donor impurities and the grain boundaries electrically insu-
lating by oxidation.” The thickness of a grain boundary
insulation layer should be carefully controlled for optimum
PTCR performance by appropriately adjusting the magni-
tude and distribution of oxygen nonstoichiometry during
cooling after sintering. A further example may be BaTiO,-
based multilayer ceramic capacitors (MLCC) employing

'Corresponding author : Han-IIl Yoo
E-mail : hiyoo@snu.ac.kr
Tel : +82-2-880-7163 Fax : +82-2-884-1413

base metal electrodes (e.g., Ni): it should be sintered in a
reducing atmosphere to avoid oxidation of the base metal
while suppressing the reduction-generated electrons and
oxygen vacancies in order to retard the insulation-resis-
tance degradation while the devices are in service. In a
sense, control or tailoring of the defect structure is similar
to blowing the soul into the body, an art of making oxides
functionally alive.

The basic principle behind the control or tailoring of the
defect structure is that point defects are thermodynamically
stable and hence, their concentrations, as thermodynamic
equilibrium properties, can be uniquely determined by the
independent thermodynamic variables, namely, tempera-
ture, pressure and compositions or their conjugate chemical
potentials of the system. This is a basic thermodynamic postu-
late, that may even be called the “~1%* law of thermodynam-
ics.” Thus, by adjusting the temporal and spatial distribution
of these thermodynamic variables, one can, in principle,
adjust the temporal and spatial distribution of defects.

Defects are not a conserved entity: they can be annihi-
lated or generated normally via solid state diffusion from or
to repeatable growth sites such as surfaces, grain bound-
aries and dislocations. Solid-state diffusion is a time and
energy-consuming process. One may, thus, kinetically cheat
the defect structure by adjusting the time rate of the ther-
modynamic variables. The latter is often taken advantage of
in actual processes to freeze-in a non-equilibrium defect
structure for the purpose of controlling the properties.

In this article, we will consider the thermodynamic and
kinetic aspects of the defect structure in complex oxides
with application in mind. As a prototype of complex oxides,
this paper specifically refers to BaTiO, among others
because, to the best of the author’s knowledge, the experi-
mental data related to BaTiO, have been extensively and
consistently documented. This is not intended as an exhaus-
tive literature review, but propose instead to convey the
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thermodynamic and kinetic behavior of the defect structure
in complex oxides. Even if BaTiO, is referred to exclusively
here, the information can easily apply to other complex
oxide systems with minor modifications.

The configuration of the article will be as follows. In Sec-
tion 2, we will summarize how to calculate the equilibrium
defect structure of the prototype complex oxide as a function
of independent thermodynamic variables. Once a batch
composition in terms of the component oxides, say BaO and
TiO, is formulated, the only possible control of the defect
structure during processing is normally via the exchange of
the volatile component, for instance oxygen during heat
treatment. This adjusts the oxygen nonstoichiometry that
eventually governs the concentration of charge carriers,
oxygen vacancies, electrons and holes that often drastically
affect the performance of the oxide-based devices. In Section
3, we will see how oxygen nonstoichiometry, as a measure of
the concentration of electronic carriers, varies with the ther-
modynamic variables and its defect-chemical implications.
Adjustment of oxygen nonstoichiometry can be achieved to a
great extent by chemical diffusion processes under an oxy-
gen potential gradient imposed during actual processing of
an oxide or related devices. Section 4 examines how oxygen
nonstoichiometry relaxes in an oxygen potential gradient in
connection with the defect structure.

2. Defect Structure

The logical framework to calculate defect structure of a
complex oxide has earlier been laid by Wagner and
Schmalzried.>® The basic idea behind is to solve the simul-
taneous equations involving concentrations of the structure
elements, be they regular or irregular, that are based on a
series of constraints of internal (thermal) equilibria, exter-
nal (particle exchange) equilibria, crystal structure preser-
vation, charge neutrality, and mass conservation (when
doped). The internal equilibria are determined by tempera-
ture only under ambient pressure (P=1 atm), but the exter-
nal ones are determined by the independent activities of the
chemical components in addition to the temperature. We
will, thus, end up with a concentration as a function of the
intensive thermodynamic variables of the given system,
viz., temperature and independent activities of the compo-
nents. We will apply this idea to calculate the defect struc-
tures of BaTiO, for pure, acceptor-doped and donor-doped
cases, respectively.

2.1. Pure case

Let us first consider pure BaTiO,. For a ternary system,
there are two composition variables, e.g., mole fractions of
Ti and O. When there are three sublattices, however, it is
more convenient to choose the molecular ratio of the compo-
nent oxides, BaO and TiO, and the equivalent ratio of the
non-metallic components to the metallic components®® or

_[Ti), 1_ 2[0},
Ym=ga’ 175%°3[Ba), 14T,

2.1

Defect Structure, Nonstoichiometry and Nonstoichiometry Relaxation of Complex Oxides 661

where [ ], represents the total concentration of the compo-
nent therein. The lattice molecule may then be represented
more appropriately as

Oguzns 2.2)

where n is called the deviation from the molecularity(n=0)
or nonmolecularity, and & the deviation from the stoichi-
ometry(8=0) or nonstoichiometry of the compound. Any
thermodynamic equilibrium property of the system is given
as a function of independent thermodynamic variables of
the system under the atmospheric pressure, temperature
(T), the activity of a component oxide, say, TiO, (amz) and
the activity of oxygen (a,,) or equivalently by their conju-
gate variables 1 and 8, considering the Gibbs-Duhem equa-
tion for the system.

One may start by conjecturing the possible defects of the
oxide from its structural and energetic considerations. For
the system of perovskite structure, the interstitial defects
may be ruled out and hence, the structure elements the con-
centrations of which we want to know may be the irregular
structure elements: V', V', Vi, €', h'; in addition to the
regular structure elements: Bag, , Ti};, Of ; in terms of the
Kroger-Vink notation.

Letting [S] denote the concentration (in number/cm®) of
the structure element S ([e']=n, [h']=p), one may formu-
late all the constraints assuming an ideal dilute solution
behavior ef defects as:

BaTi

1+n

(i) Internal equilibria:
0=e¢'+h ; K=np 2.3)
0=V, +Vii+3Vy ; K=V IIVEIVeP @9

(ii) External equilibria:

05=Vo+2e'+30,(8) ; Kp=[Volnah,  (25)
TiO, = Tin;+205+ Vg +Vy K,F% (2.6)
]
(iii) Charge neutrality:
n+2[Vg, [+4[VH]=p+2[ Vo] @7
(ii1) Structure preservation:
1p=[Bag, I+[Vy;] 2.8
13=[Tiy; +[V1i1 2.9
3p=[0p +[ V5] (2.10)

with =N,/V_ where N, and V_ being the Avogadro num-
ber and the molar volume of the system, respectively.

Here, the mass-action law constants are denoted as
KG=Re, T, S, 1) which may be represented as

K= K?exp(—i—l;llg 2.11)

where K;’ is the pre-exponential factor and AH; the
enthalpy change of the associated reaction j.
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Table 1. Matrix of Majority Disorder Types in the Systems of
BaTiO,. The Top Left Rectangle Demarcated by
Thick Solid Lines is for the Pure Case; this Rectangle
Plus the Rightmost Column for the Acceptor-doped
Case; the Rectangle Plus the Bottommost Row for the
Donor-doped Case. A Pair of Signs Out of +,0,— at
each Element are for n and &: e.g., (+,0) is for n>0

and (6~0)
+ N n 2[Vg,l 4fVri] [A¢]
p n=p p=2[Vg,] p=4[VH] - p=[A¢]
©;0 +;-) O] +5-)

o[V5 ] 2[Volen  [Vo=[VE,1[Vo =2V 12[ Vs I=[A ¢]
0 ©;+ +;0) ;0 +;0
(D] [E'c; ]:)n [DC(]_=;2[V]3':1] [De ]_=:1[\)7 ™1

It is noted that there are exactly 8 equations (Eqgs. 2.3-
2.10) for 8 unknowns (Vg.,, Vi, V5, €', h', Bag,, Tiy;,

5). As the concentrations of irregular structure elements
are normally much smaller than those of regular structure
elements, Egs. 2.8 to 2.10 turn trivial (i.e., [Bag,]~[Tim]
~[05}/3~1P ) and hence, one may delete the regular struc-
ture elements from the list of the unknowns. Then, note
that when one started with “q” irregular structure elements
in a c-component system, there would always be (c-1) exter-
nal equilibrium conditions and (q-c) internal equilibrium
conditions and 1 charge neutrality condition to determine
all those n unknowns completely.

In principle, one can solve this set of equations simulta-
neously for each defect concentration in terms of K(D), ayg,
and a,, or

[SI=£K;, aroy a0,)

However, it is usually prohibitively messy: the culprit is

2.12)
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that the algebraic structure of the charge neutrality condi-
tion, Eq. 2.7, is different from the rest, Egs. 2.3-2.6. The nor-
mal practice is, thus, to approximate the charge neutrality
condition by a limiting condition or in terms of an oppositely
charged pair of disorders in the majority (Brouwer
approximation”) depending on the thermodynamic condi-
tions.

All the possible types of majority disorder may be distin-
guished by constructing a matrix with the positively
charged disorders as row and the negatively charged ones
as column (vice versa, of course) as shown in Table 1.>* In
the case of pure BaTiO,, there can be 2x 3 elements or 6 pos-
sible majority disorder types.

By using the limiting charge neutrality condition in terms
of a majority disorder pair in Table 1, one can now solve
with no algebraic awkwardness at all each defect concentra-
tion in the form of %

[S]1= agzalql‘iozlj_-l K;

2.13)

The numerical values for the exponents “m” and “n” (not
to be confused with the electron concentration in Eq. 2.3) in
each majority disorder regime are listed (in the form of m ; n
at each element) in Table 2.

In order to construct a complete picture of defect structure
against the thermodynamic variables particularly a;;,, and
a,, over their entire ranges, one should combine these piece-
wise solutions, Eq. 2.13 in appropriate order. For this pur-
pose, one should first know the distribution of the majority
disorder types in the thermodynamic configuration space of
loga, vs. log ay, at fixed temperature. A simple method to
find the configuration of the majority disorder types goes as
follows™?:

For the present system, Eq. 2.2, the nonmolecularity may

Table 2. Numerical Values for m and n Such that [S]= a"olzaf}iozlgl K; in Each Majority Disorder Regime of Table 1

[Vo1=[VE,] 2[Vg,1=p

n=p p=4[V'{ ] 2V 1=[Vo ] 2[ViJ=n
n 0:0 -1/5; 1/5 -1/4 ; 16 -1/6; 0 —1/4 ; -1/4 -1/6 ; -1/3
p 0:;0 1/5 ; -1/5 1/4 ; -1/6 1/6 ;0 1/4 ; 1/4 1/6 ; 1/3
Vgl 17251 1/10 ; 7/5 0; 4/3 1/6; 1 0; 12 16 ; U3
Vi 1;-1 155 -1/5 0;-1/3 13 ;-1 0;-2 3 ; -7/3
Vo1 -1/2;0 -1/10 ; -2/5 0;-1/3 -1/6; 0 0;1/2 -1/6 ; 2/3
[Ad] -5 - == -5 0;0 -5 -5-
[Ac] - ;- - ;- - 1/6 ; 0 -5 - —; -
A o S DeVE] DoY) nDe)
n 0;0 ~1/4 ;0 -1/6 ; 0 -1/4 ; 1/4 -1/4 ; -1/2 0;0
p 0;0 1/4; 0 1/6 ; 0 1/4 ; -1/4 1/4 ; 1/2 0;0
[Vg.] 17251 0;1 176 ;1 0;3/2 0;0 12;1
V1 1;-1 0;-1 1/3; -1 0;0 0;-3 1;-1
Vol -1/2;0 0;0 -1/6; 0 T 0;-1/2 0;1 -1/2; 0
[Ad] 0;0 0;0 -1/6; 0
[AS] 0;0 1/4;0
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loga, loga,,
(a) o A (b) v 4

p=2[Vs.]

> logamz

Ve1=1Vi]

log 4,
(C) v A

p=4Vi} p=2AVg,]

p Le1=2vl |

Fig. 2.1. Configuration of1 /t5he mzi\jgrity disorder types on a q}g
[A¢LIDc] 500 K7 >>K™ [A¢LID:] @A ¢1>>K

be represented in terms of irregular structure elements, due
to Egs. 2.1 and 2.8-2.10 as

Pn~[Vg, ][V 1]

as normally [S]/B<<1 if S is irregular. The nonstoichiome-
try, on the other hand, may be written as

(2.149)

B8=[ Vo] ~[Vei -2[V 1=2n-p) (2.15)
for the same reason. The second equality is due to the
charge neutrality condition, Eq. 2.7.

For each of the majority disorder types in Table 1, one can
then determine by using Eqs. 2.14 and 2.15 whether n and &
are respectively larger than O (denoted as +), close to 0
(denoted as 0) or smaller than 0 (denoted as —). The results,
pairs out of —,0 and + are given in the form of, e.g., (- ; 0) to
each element in Table 1 where the first symbol is for 1 and
the second for . In this identification, one should be aware
that for the majority disorder type for which 1 can be both +
and - as, e.g,, for n~p or n~2[Vy], one may set n=0.

There can be three regions along the axis of log ao,: >0
(oxygen deficit); ~0 (near stoichiometry); <0 (oxygen ex-

P=2Va]

\

)

Vo 1=V

ne of log a,

1

175
s

vs. log aTiO, at fixed temperature: (a) Kl1 2 5>K

2

K [Dy] 7 (@) [Dy]>>K? K [A ).

cess) with increasing a,,. Also three regions along the axis
of log ay,: N<0 (TiO,-deficit); ~0 (near molecularity); >0
(TiO,-excess) with increasing a0, The configuration plane
may, thus, be divided into 9 regions. One can then assign
each majority disorder type to the region corresponding to
its sign combination for (n ; 8) in Table 1. It happens quite
often that multiple types fall in one region usually as the
number of majority disorder types increase over 9. Again old
wisdoms® help one not to get lost in finding the appropriate
sequence of the majority disorder types. They are:

Rule 1. Near molecularity and stoichiometry region (0 ; 0):
It is to be occupied by an intrinsic majority disorder type,
either electronic or ionic disorder pair depending on which
is energetically more favorable. In the present pure case, it
depends on whether K! /2>K;/5 or K/?<K!® . Consequently
intrinsic electronic and ionic disorder pairs normally do not
fall congruently.

Rule 2. Other regions: The sequence in a given region out-
side the region (0 ; 0) is to be determined by the continuity
principle, that is, any two neighboring regimes of majority
disorder should have one defect of the defect pairs in com-
mon.
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Rule 3. Majority disorder regime boundaries: Once the
majority disorder types are located sequentially in the con-
figuration plane of log a,, vs. log ay,, the two neighboring
regimes of majority disorder meet in line when one defect of
the two pairs is in common and otherwise at point. In the 3-
dimensional space of log a,,-log a,-1/T, the former would
be a plane and the latter a line.

We may call these the allocation rules. By applying these
rules, one can construct the configuration planes as shown
in Fig. 2.1 (a) and (b) for the case of Kl1 /Z>K;/5 and
Kl1 ”2<K;/5 , respectively. Up to now, however, there has
appeared no experimental evidence for BaTiO, which may
even hint a possibility of n~p being the majority disorder
under any thermodynamic condition.

2.2. Acceptor-doped case

Next we will consider BaTiO, doped with fixed amount (x)
of acceptor impurities A on, e.g., cation sites (generically
denoted as A (). Specifically, they are assumed to be tri-
valent substituting Ti or Aq!, e.g., Alq.. The lattice mole-
cule may then be written as

BaTi,_,,A0; 205 2.16)

As one more defect species Arpl is added, one needs one
more constraint in addition to those for the pure case: that
is mass conservation or

[Ar]=px (2.17)

The charge neutrality condition Eq. 2.7 and the site con-
servation conditions Eq. 2.9 should be accordingly modified,
respectively, as

n+2[Vg, [ +4[Vii [+ [Aqi]=p+2[V;] 218
1p=[Tin ]+ [V 1+[Agi] (2.19)

In addition, while the nonmolecularity is still the same as
Eq. 2.14, the nonstoichiometry should be modified due to
Eq. 2.1 as

BS=[Vo] [V -2IVH 15 [Asi]=3(n-p) (2.20)

From Eq. 2.18 or from the matrix in Table 1, one can
immediately distinguish 2 x4 limiting conditions or 8 possi-
ble majority disorder types, but one should note that any
intrinsic disorder type, n=p in the present case, cannot
occupy the near molecularity-stoichiometry region (0 ; 0),
because obviously [ A 1>>K!?, KI*° or it would otherwise
not be extrinsic due to the doped acceptors.

Again following Rules 1-3, one can construct the configu-
ration plane of the majority disorder types as in Fig. 2.1(c)
and in each regime, the values for the exponent m and n of
Eq. 2.13 are given in Table 2.

2.3. Donor-doped case
Let us assume that our BaTiO, is now doped with a fixed
amount (y) of donor impurities D on, e.g., the cation sites
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(Dg). They are again assumed to be fixed-valent, but this
time occupying Ba-site instead, or Dj,, e.g., Lag,. Then,
the lattice molecule may be represented as

Ba DyTil+n03+y/2+2n-5 2.21)

Iy

As one more unknown [Dg,] is added similarly to the
acceptor-doped case, one mass-conservation equation for the
dopant is added to Eqgs. 2.3-2.6 as

[Dy, 1=8y (2.22)

In addition, the charge neutrality and site conservation
conditions, Egs. 2.7 and 2.8 are modified, respectively, to

n+2[Vg, [ +4[VH ]=p+2[Vo ]+[Dg,] (2.23)
1p=[Bag, |+ [Vg,]+[Dj, (2.29)

The nonstoichiometry subsequently takes the form
s " "t 1 .
BSz%(n—p):Wo]—[VBa]—Z[ Y ]+§ [Dz.1 (2.25)

while the nonmolecularity still remains the same as Eq.
2.14.

From Eq. 2.23 or Table 1, one can distinguish 3x 3 possi-
ble limiting conditions or possible majority disorder types.
But, again the intrinsic disorder type n=p is ruled out from
the near molecularity-stoichiometry region (0 ; 0) in the con-
figuration plane and hence, one is left with 8 majority disor-
der types. The configuration map of the majority disorder
types can be constructed following Rules 1-3 as in Fig.
2.1(d). The reader may wish to check from the maps in Fig.
2.1 how those rules are working.

2.4. Two-dimensional representations of defect con-
centrations

Eq. 2.13 is basically a four dimensional representation
(under a fixed total pressure) of defect structure, that is not
80 easy to visualize with ordinary vision. Normal practice is,
thus, to represent in two dimensions: log [S] vs. log aTiOZ(at
fixed a,, and T), log[S] vs. log a,(at fixed A0, and T), or
log[S] vs. 1T (at fixed Ario, and a,).

By combining the piecewise solutions, Eq. 2.13 with m
and n values as given in Table 2 in accord with the configu-
ration of the majority disorder types in Fig. 2.1, one can eas-
ily draw log [S] vs. log Ao, (at fixed T and a,,)) or vs. log a,,
(at fixed A0, and T). The cross section along a horizontal
dotted line in each of Fig. 2.1(a)-(d) (designated as “h”), for
example, is shown in Fig. 2.2(a)-(d), which are nothing but
log [S] vs. log aTiOZ(at fixed T and a,). Similarly, log [S] vs.
log ay,(at given T and apg,) are shown in Fig. 2.3(a)-(d)
which are the cross sections along the vertical dotted lines
denoted as “v” in Fig. 2.1(a)-(d), respectively.

The reader is reminded that the representations, Figs. 2.2
and 2.3, are for the systems in equilibrium internally (Egs.
2.3 and 2.4) as well as externally (Eqgs. 2.5 and 2.6). In many
cases, however, the external equilibria are often suspected
for kinetic reasons. For BaTiO, and the like, for example,



December 2007

A
IV 1= AV p=4 Vi ] »le— n=p —>l—p=2V} I« [V ][V ])>
]

log[S] -1/& n

logaTioz
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A 1 ]
2 V3] = [V ot 2V} ] = (AL ] —— [ V] = [V, ]——
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el i i (Ve LIVa.]
vl i j )
T ——— A

log[S}

] |
] |
Vil i o
1 ]
1 1

logaTioz
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A

AV =[V}
)

vy

n=2{Vs'}

(Ve 1=1Vi1
V& LIVe:d
13 "

]—1/3

/

RIZ

log[S]

v

log atio,
()

| | i
Hav = 5 e =0 e =1 1

1

log[S]

v

Fig. 2.2. Log [S] vs. log Aoy (@)-(d) corresponding to the horizontal dotted lines designated as “h” (fixed a,,) in Fig. 2.1(2)-(d),

respectively.

chemical diffusion of oxygen is normally much faster than
the metallic components and hence, while oxygen exchange
equilibrium, Eq. 2.5, can be readily achieved, the metallic
component exchange equilibrium, Eq. 2.6, can often be
hardly achieved. If it is the case, ap, May not be held fixed
while a,,, varies. The extreme situation may be the case in
which the system is closed with respect to the metallic com-
ponents exchange so that the nonmolecularity 7, instead of
Aoy remains fixed by the initial batch composition across
the entire range of log a,,. Depending largely on tempera-
ture, this situation may be more realistic than the complete
thermodynamic equilibrium. One, thus, often needs to know
how defect structure varies against a,, while 1, instead of
Ap0, 18 held constant. Old wisdom® has already considered
this problem. We will now transform log [S] vs. log a,, at
fixed ap,, in Fig. 2.3 to those at fixed n to see how they
appear.

To make the situation simpler, let us assume that the ini-

tial batch composition, whether doped or not, is with a,-
deficit (n<0) such that

B[V >>[Vg]
Then, one can immediately dictate the variation of -n ver-
sus a,, at fixed a,, by following the variation of [V'{] in
Fig. 2.3(a)-(d). It is noted there that even if ay,, is held
fixed, the nonmolecularity is changing with oxygen activity,
meaning that material has to be exchanged with the sur-

rounding for keeping the system in the external equilib-
rium,

(2.26)

In each of the majority disorder regimes, one can obtain
from Eq. 2.13 for [S]=[V'i ]=~Pn,

_ 1 84
Ao, =20, (P ITK"

Each defect concentration in Eq. 2.13 can then be trans-
formed, by replacing a,,, with Eq. 2.27, into a form

2.27)
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| 1
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e[ V5 1= 2 V] —be———p =4V |-
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1
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|

l
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loga,,

@

Fig. 2.3. Log [S] vs. log ag,, (@)-(d) corresponding to the vertical dotted lines designated as “v” (fixed a0, In Fig. 2.1(a)-(d),

respectively.

[S]=20,(-Bn)"IT K} for S+ V' (2.28)

By combining these piecewise solutions in accord with the
appropriate sequence of the majority disorder types, in prin-
ciple, one can transform Fig. 2.3 to those for fixed n. The
sequence of the majority disorder types for fixed n will
remain the same as that for fixed ay,,, due to Le Chatlier’s
principle,

(ocpn

dln aTiOZ)T,ln 20, >0 (2.29)

Now let us suppose that the fixed nonmolecularity is such
that

Ki?, K.® <<-pn<<[Ar], [Dg,] (2.30)

1

Then, for the pure undoped case in Fig. 2.3(a), the regime
of n=p cannot be seen and the sequence of majority disorder
types subsequently turn the same as that in Fig. 2.3(b)
whether K| >>K!® or K!? <<K!”. The latter is trans-
formed as in Fig. 2.4(a), where it is noted that [V} ]~—fn
is flat against log a,,. For the acceptor-doped case Fig.
2.3(c), the majority disorder regime of p=4[V}}] is impossi-

ble because[VT;]~—Pn is fixed. Consequently, the trans-
formed plot should be as in Fig. 2.4(b). For the donor-doped
case of Fig. 2.3(d), the majority disorder regime [Dgy, ]
=4[V'{1 ] cannot exist due to the assumption on 7, Eq. 2.30
and the regime p=4[V'{ Jeither for the same reason as in
the acceptor-doped case. Fig. 2.3(d) is, thus,.transformed as
in Fig. 2.4(c).

Actually, any shift of disorder regime with the component
activities is only made possible by exchanging the chemical
components, say O and Ti (or Ba) with the surrounding.
Otherwise, the shift itself would be impossible. For exam-
ple, when our donor-doped BaTiO, undergoes a shift from
[Dg.]1~4[V'$i] to n=[Dg,] at a fixed ap, (see Fig. 2.3(d)),
the lattice molecule changes nominally from Ba, D Ti, O,

to Ba, D TiO,, that is, n changes from —y/4 to 0, indicating
that Ti is supplied from (or Ba is drained to) the surround-
ing. This is why we have limitations on the availability of
the majority disorder regimes for the partially closed cases
(m=constant) in Figs. 2.4(b) and (c). One may take advan-
tage of this fact to tell whether the system is closed with
respect to metallic component exchange: If a donor-doped

BaTiO, exhibits an a,,-region where nocag in agreement
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o tions of log ayy,, simply by following that of [V5 ], but with
P o1

[
|
1
1
|
|
t
I
t
i
i
t
t
]
i
i
i
i
i
i

v

loga,,

(2)

1
e 0=V e AT ] =[AL ] e p =[AL ]

log(S]

Fig. 2.4. Log [S] vs. log a,, at fixed nonmolecularity n, (a)-(c)
corresponding to Figs. 2.3(b)-(d), respectively.

with Fig. 2.3(d), for example, then one may say that the sys-
tem remains open to keep ag,, rather than n, constant,
indicating the presence of a second phase.'”

Finally, one may be interested in the variation of Ao,
with a,, while 1 is held fixed. It is calculated via Eq. 2.27 or
Eq. 2.6 or more easily in the present case as

twice its slope in the opposite sense.

2.5. A further complication: hole trapping

Up to now, we have considered that all donors or accep-
tors, whether intrinsic or extrinsic, are fully ionized. As
temperature is lowered, however, those centers particularly
of extrinsic origin tend to trap electrons or holes. Once elec-
tronic carriers are fully trapped, the defect-sensitive proper-
ties are often altered appreciably at low temperatures in
particular.” The trapping effect may be ingeniously taken
advantage of in designing the composition of actual mate-
rial for special functions. Here we will consider, for example,
hole trapping by fixed-valent acceptor impurities, say, Aql.

When hole trapping is no longer negligible and hence, the
concentration of the trapped holes, say, [A{] is of concern,
one add to Egs. 2.3-2.6 one more equilibrium condition, that
is the internal equilibrium condition with respect to hole
trapping or ionization equilibrium condition of the accep-
tors,

x Al
Ai=Ap+h ; K =LelR 2.33)
[Ac]
Mass conservation constraint, Eq. 2.17 is accordingly
modified as

[AC]+[AC]=[A] (2.39)

The charge neutrality equation, however, remains the
same or Eq. 2.18 because the trapped holes make the accep-
tor centers only neutral (A{) in the present case. Other-
wise, it would have to be modified to include the acceptors
with different effective charges due to hole trapping.

One may define the trapping factor y ' as

R (2.35)

x

Two extreme cases are distinguished. When 3 '<<1, the
concentration hierarchy will be such that

[AL 1~[A], >p>>[AG ] (2.36)

and the defect structure is essentially the same as in Fig.
2.3(c) or Fig. 2.4(b) only with [AY;] added as a minority dis-
order if one likes. When y '>>1, on the other hand, most of
holes are trapped and the concentration hierarchy in the
near stoichiometry regime (2[Vy]=[A']) turns to

[AL ]~ [A], >[Ac >>p (2.37)

As a,,, increases further, the trapped centers come to over-
whelm the acceptor impurities or
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Fig. 2.5. Defect structure for the acceptor-doped case (corre-
sponding to Fig. 2.3(c) or Fig. 2.4(b)) with holes
trapped fully (x™*>>1).

[AZ]=[A], >>[AL I>p (2.38)

As a,, increases even further, the charged disorders in
majority will finally become p=[A'r; ]. The defect structure
is as shown in Fig. 2.5, in which the portion corresponding
to the concentration hierarchy of Eq. 2.37 is essentially the
same as given by Waser” for SrTiO,,.

2.6. Defect structure and reality

Experimental studies on defect structure of complex
oxides are very much limited compared to those on binary
systems. It is, thus, fair to say that our understanding of the
defect structure of the complex oxides is still far from com-
plete. For example, BaTiO, is one of the most studied sys-
tems, but we still do not know whether donor impurities,
say, Lap, are compensated by Vi or Vg, or both in the
ion-compensation regime. Furthermore, it has been believed
from a structural point of view that Ba is more mobile than
Ti, but a most recent study” shows that Sr substituting Ba
and Zr substituting Ti are all comparatively mobile at ele-
vated temperatures, leaving the defect structure more puz-
zling.

Information on the defect structure has been obtained
usually from the observations of defect-structure-sensitive
properties against the component activities, say, ay,,, and
a,,, in particular. The simplest and straightforward proper-
ties may be electrical conductivity and (self- or impurity-)
tracer diffusivities among others because they are directly
proportional to the concentrations of relevant defects in the
majority. For the system of BaTiO,, for example, a multi-
tude of studies have been made on the electrical conductiv-
ity against a,,(see, e.g., Ref. 8), but never been done against
ar,- The latter may be experimentally extremely difficult
to control if not impossible. Cation tracer diffusion study
against oxygen activity has just been started.” Even for the
conductivity studies, it is not always clear whether Ao, OF M
is held fixed during the measurement. The system under
examination is, thus, likely ill-defined thermodynamically
in the strictest sense.

Vol. 44, No. 12

For the system of BaTiO,, the equilibrium conductivity
has been the most extensively documented (see, e.g., Refs. 8,
10 and 11) over the experimentally viable range of —20 <log
a,,<0 at elevated temperatures, but the remaining vari-
able, ag,, or n has not been explicitly specified. Fig. 2.6
shows the typical results for the pure (a)'*'?, acceptor
(A'r;)-doped (b)'® and donor (Lag, )-doped case (c)'”, respec-
tively.

The conductivity is mostly attributed to electronic carri-
ers, thus proportional to n or p depending on which is in the
majority against a,, and hence, > ag‘z due to Eq. 2.13 or
Eq. 2.28 in each disorder regime. It has always been found
for the undoped and acceptor-doped cases all alike that over
the entire range of oxygen activity examined, the oxygen
exponent “m” takes a value close to —1/6, —1/4 and +1/4 in
sequence with increasing a,,.*'” For the acceptor-doped
case, this sequential variation is no doubt in agreement
with the sequential shift of the majority disorder types from
n~2[Vp] to 2[V]~[A'y] with increasing a,, as shown in
Fig. 2.3(c) or Fig. 2.4(b). For the undoped case, however, the
interpretation of the same m-sequence is not so straightfor-
ward because depending on ag,,, or n, there can be, next to
the n~2[{Vy] regime where no a{)lz/e , two possible ionic dis-
order regimes, [Vy]~[Vg,] or [V§]~2[V ] where nx a612/4
and pec a521/4 , see Fig. 2.1(b) and Table 2 or Fig. 2.3(b). It is
not clear yet for the system of “pure” BaTiO,, the experi-
mental finding of 5 o aSZM is due to [Vg]=[Vg,] or [Vi]=
[V4] or even due to the background impurity acceptors.®'?”
This issue may be elucidated by observing the conductivity
variations on pure specimens with different nonmolecular-
ity m, but the experiment may be not so easy because of the
extremely limited range of n of the single phase BaTiO,'""”.
Furthermore, none of the exclusively p-type regimes,
(h',A'¢), (h,V3g!) and (', V') has ever revealed itself up
to a,, =1 for the system of BaTiO,.

For the donor-doped case, on the other hand, the oxygen
exponent of the conductivity takes values m~-1/6, 0, —1/4
In sequence as a,, increases up to 1,2 see Fig. 2.6(c). This
sequence reflects the shift of the majority disorder types
from n~2[Vg] (m=-1/6) to nx~[Lag,] (m=0) and finally to
either [Lag,]~2[Vy.] or [Lag,]~4[V'H ] (m=-1/4), see Fig.
2.1(d) and Table 2 for the m-values. There seems to be no
doubt about the majority disorder types for the former two
regimes (m=-1/6 and 0), but the last, ionic compensation
regime is not clear concerning whether [Lag,]=2[Vg,] or
[Lag,]=4{V' ]. There was once an attempt to elucidate this
issue: Yoo et al.'” measured the equilibrium conductivity on
the three donor-doped specimens with nominal compositions
Ba, La Ti 0, (designated as Vy), Ba,_; ,La TiO; (as Vy,)
and Ba, La TiO, (as E) all with y=0.01 for the purpose of
sorting out one out of V'f{ , Vg and e' that can compensate
the impurity donors Lap, in air atmosphere. The results
are as shown in Fig. 2.6(c). It has been found that there is a
minority second phase for all the three and the p-type con-
ductivity increases up to 16% of the total electronic conduc-
tivity at a,,=1. Consequently, no conclusion could be drawn
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Fig. 2.6. Equilibrium total electrical conductivity(c) vs. log a,, of BaTiO,: (a) Undoped, polycrystalline BaTiO,, from Ref. 10; (b)
Acceptor(1.8 m/o Al)-doped single crystalline BaTiO,, %rom Ref. 28; (c) Donor(1.0 m/o La)-doped polycrystalline BaTiO,,

from Ref. 11.

to the identity of the ionic disorder compensating the doped
donor impurities, but it has been concluded that ary,,
rather than ), is held fixed as in Fig. 2.3(d) because the
region where n< a512/4 and poc a0+21/4 is observed at high
oxygen activity region that would otherwise not be seen, see
Fig. 2.4(c).

For the quantitative, defect-chemical analyses of all these
conductivities in Fig. 2.6, the reader is referred to Refs.
10,11,13,16. It is mentioned in passing that for the case of
Al-doped BaTiO,, Fig. 2.6(b), practically all holes are
trapped by Al-acceptors at the measurement tempera-
tures.’” The responsible defect structure is, thus, as given in
Fig. 2.5 and the p-type conductivity (m=1/4) in Fig. 2.6(b) is
essentially due to the trapped holes'?.

3. Oxygen Nonstoichiometry

Egs. 2.15, 2.20 and 2.25 indicate that whether the system
is undoped or doped, its oxygen nonstoichiometry is a mea-
sure of the concentrations of electronic charge carriers, n
and p,

_1
pd=5(n-p) (3.1)
Fig. 3.1 shows how the nonstoichiometry alters the trend

of defect-sensitive properties such as the electronic electri-
cal conductivity, thermoelectric power and oxygen chemical
diffusivity.’® Thus, the control of oxygen nonstoichiometry

during processing is very often crucial to ensure the
required properties of an oxide or functions of the device
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Fig. 3.1. Electrical conductivity (a), thermoelectric power (b) and chemical diffusivity (c) of undoped BaTiO,; vs. oxygen nonsto-
ichiometry 8. Note that the stoichiometric composition is the demarcation point between n-type and p-type behavior. From

Ref. 10.

thereof.

As is expected from Fig. 3.1, either in far oxygen-deficit
(6>>0) or oxygen excess region (8 <<0), the nonstoichiome-
try variation is rather trivial because n>>p or n<<p. In the
near stoichiometry region 8~0, on the other hand, the non-
stoichiometry variation is not so trivial because there are
both electrons and holes. If electronic carriers are trapped
by, e.g., doped impurities, then nonstoichiometry variation
is even further informative. We will consider here the most
general case, namely, the nonstoichiometry in the near sto-
ichiometry region of the acceptor-doped BaTiO, with holes
trapped.

3.1. Nonstoichiometry in general
For the acceptor-doped BaTiO, with the lattice molecular

formula of Eq. 2.16, the nonstoichiometry has been given a
Eq. 2.20 or :
. " nm 1
B8=[V51- [Vl -2[VH 1- S [Ag], (3.2)
When the concentration of trapped holes is no longer neg-
ligible compared to that of free holes, one may rewrite Eq.
3.2, due to the mass conservation constraint, Eq. 2.34 and
the charge neutrality constraint, Eq. 2.18, as
_1 x pno1 .t
B8=3 n-p-[A%; D=5 n-p(1+1 )] 3.3
where ¢ is the trapping factor defined as the concentration

ratio of trapped holes to free holes in Eq. 2.35. It is noted
that the stoichiometric composition §=0 falls, in general, at
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n=p(l+x "), not at n=p. Only when 5" —0, the latter would
be the case.

The solutions for the defects in Eq. 3.3 are given in the
majority disorder regime of 2[Vy 1=[A'r; ] (see Table 2) as

p=x[A%] (3.9
n=Ky'[AL]" (3.5)
[AZ] ~2 " [A) *K'ra0, (3.6)

Eq. 3.3 then takes the form'”

ps=—/K! smh[ ln ] 3.7

4 a2 0,
where
=K1+ 3.8)
ap, =4(1+1 ) "K;’Ka,[AL” (3.9)

The latter ao is the oxygen activity corresponding to §=0
or n=p(1+y ) see Fig. 2.5. At this specific oxygen activity
aoz, the variation B8 as a function of In a,, exhibits an
inflection or

(ﬁﬂ@Lj =0 (3.10)

3
dln a,, .

This fact actually provides a means to locate the stoichio-
metric point on a nonstoichiometry isotherm that is mea-
sured.'®

Eq. 3.8, in association with Eq. 2.3, indicates that

=n(p+{A% ]), thus, the latter may be called the “pseudo
equilibrium constant for intrinsic electronic excitation.” It is
noted that only when y ' —0, K} =K, and Eq. 3.7 takes the
conventional, familiar form:

Bd= —,\/Kslnh( ln-—j (3.11)
aoz

This may be the case if the system is pure enough and/or
temperature is high enough, see Eq. 2.35. It has often been
attempted to determine K, from the nonstoichiometry iso-
therms via Eq. (3.11) even for a system which bears possible
trapping centers, e.g, acceptor impurities whether they are
intentionally doped or not. In any case, one should be aware
what he actually determines is not the true K, but K} in
general that is dependent on the type and concentration of
the trap centers. One way to evaluate K, may be to deter-
mine K as a function of [A], via Eq. 3.7 at fixed tempera-
ture or K, =K(1+[A]/K)), due to Egs. 3.8, 2.35 and 2.36.
Then, one may take its limiting value as [A],— O for the true
K,. This, however, has never been experimentally imple-
mented yet.

Once the nonstoichiometry is measured as a function of
oxygen activity at different temperatures, the partial molar
enthalpy of component oxygen relative to gas oxygen at the
standard state, AHo(=Ho-Hp /2) is of some interest. By
noting that the relative partial molar Gibbs free energy of

component oxygen AGo = po—-o,’2=RTIn ag; in Eq. 3.7,

Defect Structure, Nonstoichiometry and Nonstoichiometry Relaxation of Complex Oxides 671

AH, (8 =0)+AH,

AH (3 = 0)+ (AH, - AH, )}

AF,(3=0) :
2(AH, - AH,) \

AHy (8= 0)— (AH, ~AH )| X f A DT

,~AH, . \ .......
AHG (3= 0)— AH, oo =

non-trapped
- - - fully-trapped

0

O —»

Fig. 3.2. Variation of the relative partial molar enthalpy of
component oxygen vs. oxygen nonstoichiometry for
non-trapped case (" '—0; solid curve) and fully
trapped case (3 '—©0; dashed curve).

one may obtain, due to the Gibbs-Helmholtz equation,

dln a
— 13
AHo )= [——(1 /RT)] =AH, (3=0) —L_(Ba) AH! (3.12)

with

,_ OlnKi _ dln(1+y 7Y

AR =577/ - A5 R T 3.18)

where AHg (8=0) denotes the relative partial molar
enthalpy of component oxygen at the stoichiometric compo-
sition (3=0). It is noted that as y '— 0, Eq. 3.12 converges to
that of the pure case corresponding to Eq. 3.11. Variation of
AHg (8) gainst 8 is illustrated in Fig. 3.2 for x™'— 0 (no trap-
ping) and for ¢ *—co (full trapping), respectively.

It is seen that AHg (8) are bounded by AHg (6=0)+AH},
and AHo (6=0)-AH; as 8<<—/K{/B and 8>>(/K})/B,
respectively, and varies anti-symmetrically crossing §=0.

The sigmoidal variation of AHo (8) crossing §=0 in Fig.
3.2 may be understood from a bit different view point.’” For
simplicity’s sake, let us consider the pure BaTiO, with no
traps. Then, oxidation or oxygen incorporation reaction may
take place simultaneously in two ways: one is by producing
the free holes and the other by consuming free electrons or

% 0,(8) + V=03 +2h' (3.14)
0,(g)+Vy+2e' =0 (3.15)

They are indistinguishable thermodynamically, but dis-
tinguishable defect-chemically. Letting K and K denote
the equilibrium constant for these reactions, respectively,
they are

2

N N -1 (3.16)
5 o 52 = [Voln’ao,
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Obviously, Kn=K}{1e=KpKi_2, see Egs. 2.3 and 2.5, and
hence, the associated enthalpy changes AH, and AH, are
interrelated as

AH, =AHp, =AH, 2AH; (3.17)

Given that the oxidation proceeds in this way,AHo may
be taken as a fractional sum of AH,, and AH, such that

H, =D N
e

22 AH, (3.18)

that takes the form, after some algebra using Eqs. 2.3 and
3.1,

AHo =% (AH, +AH, )——L2 — 1 (aH -aH,) @319
JB3y+K; 2
This is essentially the same, due to Eq. 3.17, as Eq. 3.12
with ' 0. One can then immediately identify AHo (§=0)
to be

AH, (5=0)=% (AH, +AH,) (3.20)

If holes are fully trapped or x ' — co, on the other hand,
the oxygen incorporation may proceed via Eq. 3.17 and via,
instead of Eq. 3.16,

3 0.(8)+ Vi +2A47, =05 +2A%, (3.21)

with the associated enthalpy AH,-2AH,, see Egs. 3.14
and 2.33. In the same line as in Eq. 3.18, one can immedi-
ately obtain Eq. 3.12. The same reasoning will also be
applied to the case in which electrons are trapped instead of
holes.

Eq. 3.18 indicates that when an oxygen atom is incorpo-
rated into the lattice, it picks up holes (Eq. 3.14) and elec-
trons (Eq. 3.15) at random depending on their availability.
It is, thus, quite natural that the partial molar enthalpy of
the component oxygen, AHy is dependent on the relative
amount of electrons and holes or the oxygen nonstoichiome-
try.

The relative partial molar entropy of component oxygen,
ASp can also be obtained as a function of 5 either by using
the thermodynamic identity [#AGo/8T];=-ASo or by the
same argument as in Eq. 3.18,

g -0 P
ASo=gloaS,+ B as, (3.22)

but it is not pursued any further. The reader who is inter-
ested in is referred to Ref. 19.

3.2. Experimental reality

Nonstoichiometry is normally measured by thermo-
gravimetry or coulometric titrometry. In the former, one
changes stepwise the oxygen activity in the surrounding of a
specimen oxide and monitor the corresponding weight
change. In the latter, one incorporates a predetermined
amount of oxygen in the form of ionic current and measure
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Fig. 3.3. Oxygen nonstoichiometry vs. oxygen activity at dif-
ferent temperatures as measured on undoped BaTiO,.
Solid lines are the best fitted to Eq. 3.7 in the text.
From Ref. 19.

the change in equilibrium oxygen activity in the surround-
ing. For the experimental details, the reader is referred to,
e.g., Refs. 19 and 20. In any case, an extreme care should be
exercised in order to secure high enough precision to mea-
sure the nonstoichiometry variation particularly in the
near-stoichiometry region because the nonstoichiometry
variation vs. oxygen activity there is the smallest, see Eq.
3.7 or 3.11. The experimental data are usually scarce in this
near stoichiometry region, that is probably for this reason.
The stoichiometric point, ag, in Egs. 3.7 and 3.11, that is
normally determined as in Eq. 3.9, is, thus, not so precisely
known for most of oxides whether simple or complex. Here
we will show the experimental results on the nonstoichiom-
etry of undoped BaTiO,.

For the system of undoped BaTiO, ;, there were five differ-
ent data sets®®® against oxygen activity, that are all limited
to the range of log a,,<-7 over the temperature range of
1000°C to 1340°C. Furthermore, only relative changes in
nonstoichiometry, not the absolute values, were given.2'*¥
Even when the absolute values were reported,??** the sto-
ichiometric points could not be located due to the poor preci-
sion. Tt is only recent'® that the nonstoichiometry has been
measured with highest ever precision in the near stoichiom-
etry region including the stoichiometric point ag,. These
results are shown in Fig. 3.3.

The solid curves in the figure are the best fitted to Eq. 3.7
with K and a°02 as fitting parameters. As is seen, Eq. 3.7
satisfactorily describes the nonstoichiometry, even though
the best-fitted values for the fitting parameters are sub-
jected to rather large uncertainties. The latter is again
attributed to the still poor precision of the measurement
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Fig. 3.4. Equilibrium oxygen activity vs. reciprocal tempera-
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in the text. From Ref. 19.

particularly in the vicinity of the stoichiometric point.

The relative partial molar enthalpy of oxygen is evaluated
at different nonstoichiometry values by using the thermody-
namic identity

RT 2ln 20,"RT "R (3.23)

In Fig. 3.4 is plotted log a,, vs. reciprocal temperature at
different nonstoichiometries. As is seen, it is generally lin-
ear for a fixed & over the temperature range examined. The
relative partial molar enthalpy and entropy of oxygen may
then be evaluated from the slope and intercept, respectively.
The results of AHp are as shown in Fig. 3.5. In agreement
with Eq. 3.12, the partial molar enthalpy variation is the
best fitted as

AHo (3)/kJmol'=~(76+5) (272438)5

- —  (3.29)
J52+(3.02£0.03)x 10

4. Nonstoichiometry Re-equilibration

When the oxygen activity is changed in the surrounding of
a binary oxide AO, ; that has previously been equilibrated
with the surrounding, the nonstoichiometry of the oxide
changes towards a new equilibrium value. The overall
kinetics of this nonstoichiometry re-equilibration process
typically consists of the surface reaction step and solid-
state-diffusion step in series. The former, gas-sold reaction
at the surface is usually regarded as a simple chemical reac-
tion of the first order.® The latter diffusion refers to the
chemical diffusion of the oxide. We know that there should

be one and only chemical diffusion coefficient because there
is only one composition variable for the binary oxide (but
this is only true when the internal defect equilibrium pre-
vails.?).

For an infinite bar of AO,_; with the square cross section of
2ax 2a, for example, the overall re-equilibration kinetics is
normally described in terms of the two kinetic parameters,
the surface reaction rate constant k and chemical diffusiv-
ity D as'>?”

) o exp Y]

a

2

(W-80) _y |~ a 4.1

3@-00) | 2, Ba(Ba+L+L) b

with B such that

Btanp=1. ; L=2K 4.2)
D

Here, 3(t), 3(0) and &(x) are the mean (at time t), initial
(at t=0) and final (as t—°) value of oxygen nonstoichiome-
try, respectively. By monitoring the temporal variation of
the nonstoichiometry 3(t) by thermogravimetry or a 3-sen-
sitive property, e.g., electrical conductivity, thus, one can
determine the two kinetic parameters. As far as binary sys-
tems are concerned, we believe that we understand the
relaxation kinetics well. The chemical diffusion, in particu-
lar, has long been understood in the light of chemical diffu-
sion theory™ or in the light of the ambipolar diffusion
theory.®

Concerning the complex oxides, however, it is fair to say
that the nonstoichiometry relaxation kinetics and chemical
diffusion is not so well understood yet. It is only recently that
the kinetics has been examined in a systematic way.'*'>1%5
We will here present the present understanding of the
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Fig. 4.1, Typical nonstoichiometry relaxation of undoped
BaTiO, in its n-type branch of oxygen activity (a) and
p-type branch of oxygen activity (b) during reduction
and oxidation at 1000°C. The solid lines are the best-
fitted to Eq. 4.1 in the text. From Ref. 12.

kinetics, particularly chemical diffusion process first for the
undoped or acceptor doped case and then for the donor
doped case, in the order of complexity of the relaxation
kinetics.

4.1. Undoped or Acceptor-doped BaTiO,

4.1.1. Relaxation behavior and chemical diffusion

It is already pointed out that the undoped and acceptor
doped BaTiO, have the essentially the same defect struc-
ture, Fig. 2.3(c) or 2.4(b), in the oxygen partial pressure
range that is experimentally viable in practice, — 18<log
a,,<0. Consequently, the equilibrium conductivities also
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Fig. 4.2. Chemical diffusivity (D) and surface-reaction-rate
constant (k) vs. oxygen activity of undoped BaTiO, at
1000°C. The dotted and solid lines are for the visual
guidance only. From Ref. 12.

have the same trend with oxygen activity as shown in Fig.
2.6(a) and (b). Likewise, the relaxation kinetics has also
turned out to be essentially the same.'*'®

When oxygen partial pressure in the surrounding of the
system oxide is abruptly changed either in its n-type branch
of oxygen activity (o, noc a612/4 ) or in the p-type branch (o,
< poc a(l)/: ) in Fig. 2.6(a) or (b), its electrical conductiviy, as a
direct measure of the oxygen nonstoichiometry (3~n/2 or —
p/2, respectively), relaxes typically as shown in Fig. 4.1 ()
and (b).

These nonstoichiometry relaxations are satisfactorily
described by Eq. 4.1, as depicted by the solid curves in Fig.
4.1. The two kinetic parameters are subsequently evaluated
as shown in Fig. 4.2.

Upon comparison with the corresponding conductivity in
Fig. 2.6(a) or (b), one can see that in the n-p mixed regime of
oxXygen activity, i.e., in the near vicinity of the conductivity
minimum in Fig. 2.6(a) or (b), the overall kinetics is gov-
erned mostly by the surface reaction step and otherwise,
controlled by the diffusion step. If one totally ignored the
surface reaction step or simply took L>>1 in Eq. 4.1 as was
often practiced, he would get, despite somewhat larger
uncertainty, a diffusion coefficient which appear as shown
in Fig. 4.3.

Finally, the true chemical diffusivities that are responsi-
ble for the diffusion step in the nonstoichiometry relaxation
kinetics have turned out to be as shown in Figs. 4.4(a) and
(b) for the undoped BaTiO, that is polycrystalline, and for
the acceptor (Al)-doped BaTiO, that is single crystalline,
respectively.''® It is noted that the diffusivity takes a value
up to the order of 10°° cm®s depending on oxygen activity
irrespective of temperature in its range examined and
exhibits a maximum in the middle of the oxygen activity
range examined. One may be concerned that the diffusivity
for the polycrystal BaTiO, (Fig. 4.4(a)) may have been sub-
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Fig. 4.3. Apparent chemical diffusivity vs. oxygen activity
which if the surface reaction step were ignored, would
be obtained. From Ref. 12.

jected to the influence of grain boundaries and hence, the
diffusivity is somewhat enhanced. It seems not to be the
case here, however, because the polycrystal results are quite
similar to the single crystal results (Fig. 4.4(b)) in both
trend and magnitude.

4.1.2. Defect-chemical interpretation

Referring to the defect structures in Fig. 2.3(c) or 2.4(b)
and the corresponding conductivity isotherms in Figs. 2.6(a)
and (b), for the undoped and acceptor-doped BaTiO,
respectively, the defects in the majority must be Vi com-
pensated by the acceptors A'c whether they are extrinsic
(ie., A'r;) or not. One may, thus, take, as the most mobile
charged components, oxide ions (0*) and electrons (¢) in
this near stoichiometry regime.

According to the chemical diffusion theory by C. Wagner,?
the chemical diffusion coefficient of component oxygen is
given as

_RT -1

- oIV
Do 8_F§Gion el [Vol

4.3
oln ag 4.3)

2|

where o, denotes the partial ionic conductivity, t, the
electronic transference number, and F the Faraday con-
stant. The factor within the absolute-value signs is referred
to the thermodynamic factor.

Referring to the defect structure in the near stoichiometry
regime, 2[Vy]=[A'c] in Fig. 2.3(c) or 2.4(b), the ionic con-
ductivity is due to Vi and essentially independent of oxy-
gen activity. The variation of the total conductivity in Figs.
2.6(a) and (b) is, thus, attributed to that of the partial elec-
tronic conductivity, o that is due to electrons (e') and holes
whether trapped (A%;) or not (h')."” By using the solutions
for n, p and [A};] in Eq. 2.13 and Table 2, the total conduc-
tivities in Figs. 2.6(a) and (b) can be written as'®'”
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Fig. 4.4. Chemical diffusivity isotherms for the undoped (a)
and acceptor (1.8 m/o Al)-doped BaTiO, (b). From Refs.
13 and 16.

1, 2o,
6=0,+0,,=0, cosh| zIn—== | +o,, (4.4)

4 g o,
where o, denotes the minimum electronic conductivity
that falls at the oxygen activity a*o2 , see Figs. 2.6(a) and (b).
The solid lines are the best fitted to this equation. By using
the values for o af)z and o, that are evaluated from c as
the fitting parameters, the electronic transference number
t, is calculated as shown in Fig. 4.5 for the case of, e.g., the
acceptor-doped BaTiO,.

The thermodynamic factor can also be calculated from the
defect strucutre. The oxygen nonstoichiometry is in general

given as in Eq. 3.7 or Eq. 3.11. Differentiation leads to the

el,m?
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Fig. 4.5. Electronic transference number for 1.8 m/o Al-doped
BaTiO, as calculated from the total conductivity in
Fig. 2.6(b). The solid lines are calculated from Eq. 4.4
in the text. From Ref. 13.

thermodynamic factor as

o[Vol
Oln aoz

8 _ 4
+p(l+y ! a
n+p(l+r ) JK cosh&ln—;og)
a

0y
This is nothing but the inverse of the slope of the nonsto-
ichiometry isotherm as in Fig. 3.3. If the system is pure
enough, then one may set '=0. It has been actually found '?
that x'<<1 for the undoped, and yx'>>1 for the Al-doped
case.
Finally by substituting Eq. 4.5 into Eq. 4.3, one obtains

(4.5)

. " t
Do = __QOeIT (4.6)
cosh&ln%j
ao2

with the factor that is independent of the oxygen activity

~ 0 RTo;
Do=—22 4.7
0 2F2 K ( )
The solid lines in Fig. 4.4 are the best-fitted to Eq. 4.6 by
using the experimental values for o, and t,."*'® As is seen,

Eq. (4.6) precisely explains the variation of the chemical dif-
fusivity.

4.2, Donor-doped BaTiO,

4.2.1. Relaxation behavior and chemical diffusion

The nonstoichiometry relaxation of the undoped or accep-
tor-doped BaTiO, is simple, governed by the chemical diffu-
sion of oxygen and the gas/solid oxygen exchange reaction.
It is not different from ordinary binary oxides. This is no
longer the case for the donor-doped case. Actually, a long-
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Fig. 4.6. Equilibrium defect structure of 1m/o La-doped
BaTiO, at 1200°C as derived from the conductivity iso-
therm. Note that with decreasing oxygen activity, the
majority disorder type shift from [Lag,]~4[VTi] to
[Lag,)=n to n~2[Vy]. From Ref. 30.

standing, notorious problem with BaTiO, (as well as with
any other perovskite oxide) is that kinetics of oxygen nons-
toichiometry re-equilibration is usually very much, and
sometimes even prohibitively, sluggish for donor-doped
BaTiO,, compared to undoped or acceptor doped counter-
parts, and hence, one often hardly knows even whether a
donor-doped specimen has been completely equilibrated
upon re-equilibration. According to a report,*” for instance,
it took more than 4 months to equilibrate a donor(INb)-doped
BaTiO, specimen measuring 4 mmx4 mmx 12 mm with an
average grain size of a few microns upon a change of tem-
perature from 1308 to 1216 K in an atmosphere of fixed oxy-
gen partial pressure of 0.0022 atm. If undoped or acceptor-
doped, it would have taken no more than a few hundreds
seconds, see Fig. 4.1. This unusually sluggish kinetics may
be called the kinetic anomaly of donor-doped BaTiO,. Not
surprisingly, the chemical diffusivity data are extremely
sparse for donor-doped case. Only two data sets are found in
the literature, one by Wernicke® on La-doped and the other
by Nowotny and Rekas®” on Nb-doped BaTiO,, both only
against temperature in fixed Po, atmospheres (0.32 and
0.0022 atm, respectively).

A recent study®™ shows that compared to that of the
undoped counterpart in Figs. 4.1 that is usual, the relax-
ation behavior of donor-doped BaTiO, appears unusual
depending on the oxygen activity.

It is brought back to the reader’s attention that in Fig.
2.6(c), the conductivity for the specimen denoted as V is
the equilibrium conductivity of La-doped BaTiO, (nominal
composition Ba, 4 La, ; Ti, 60,50 ), that has an average grain
size of 0.86£0.03 um and the bulk density of 96% of the the-
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Fig. 4.7. Conductivity relaxation for the stepwise changes back and forth between the oxygen activities (in log 302)3 (a) 0.01<>-0.59;
(b)-1.89+>-2.49; (c) -7.91—-8.61 and —8.66——7.91; (d)-8.65—-9.43 and -9.44—-8.53; (¢) -9.41—-10.20 and -10.21—-9.42;
() -13.02—-13.83 and -13.80—-13.05. Insets: exploded view of the first and faster relaxation. Note the change of kinetics
from one-fold (a,b) to two-fold (c-e) to one-fold (f) as the mean oxygen activity decreases. Solid curves are the best fitted to
Eq. 4.1 or Eq. 4.11 or Eq. 4.12 in the text. From Ref. 30.
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oretical value. The corresponding defect structure is basi-
cally as shown in Fig. 2.3(d) and in more detail for the
system in present concern, in Fig. 4.6: As Po, decreases from
1 atm at the given temperature, the majority type of disor-
der shifts from {Lap,]~4[V%i], through [Lag,]~n, to
n=2[Vg].

Fig. 4.7(a)-(f) show sequentially the as-measured conduc-
tivity relaxation curves for stepwise changes back (reduc-
tion) and forth (oxidation) between the pre-fixed oxygen
activities specified, as the (geometric) mean oxygen activity
decreases. Clearly, the relaxation behaviors differ depend-
ing on the oxygen activity windows imposed or the mean
oxygen activity. As the latter decreases from log ap,~0, the
conductivity relaxes apparently with one relaxation time
(a,b), with two relaxation times (c-¢) and again with one
relaxation time (f). In other words, the kinetics varies from
1-fold to 2-fold to 1-fold with decreasing a,,- The 1-fold and
2-fold kinetics can be more clearly recognized from a plot of
the relaxation curves o(t) against log t, instead of t, see Fig.
4.8. It is noted in two-fold kinetics cases [Fig. 4.7(c)-(e)] that
the two relaxation times differ by orders of magnitude.

4.2.2. Defect chemical interpretation

The two-fold relaxation is understood as follows: The non-
molecularity n as well as oxygen nonstoichiometry & of the
system is presumed to be spatially homogeneous in the
beginning. As soon as a different oxygen activity is imposed
upon such a homogeneous system, a new redox equilibrium
will be immediately established at the surface of the speci-
men via the redox reaction, Eq. 2.5, assuming the surface
reaction is fast enough (Of course, this is not always the
case though®®), and proceeds inward via chemical diffusion
of component oxygen as is the case with the undoped or
acceptor-doped BaTiO,.

220 -

215 ¢

o/Q'cm

2.10 -

2.00

2.70

1 10 100 1000 10000 100000

t/s

Fig. 4.8. Conductivity vs. time in a log scale. Note the one-
fold and two-fold kinetics are clearly discerned, and if
T>>T,, the two-fold kinetics may turn like the one-
fold one. From Ref. 30.
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Now, we further assume that there also prevails initially
the external equilibrium with respect to Ti-exchange (or Ba)
between the system and a minority second phase or Eq. 2.6.
The presence of the second phase has earlier been indicated
upon shifting of the majority disorder types in the donor-
doped case'”, see Section 2. Such a second phase, however
small it is, holds Ao, fixed. When the oxygen activity is sud-
denly changed to, say, a smaller value, while Ao, is fixed by
the presence of the second phase, then due to the equilib-
rium condition Eqs. 2.4 and 2.6 (or [V% 1[V} ]2=KTaTi02), a
gradient of [V} ] is established right at the surface where
the surface reaction is again assumed to be fast enough.
This gradient subsequently drives the chemical diffusion of,
say, component Ti. The thermodynamic situation is
depicted in Fig. 4.9.50

It is well known that charge neutrality may break down at
grain boundaries and surfaces. What is observed in the
relaxation of Fig. 4.7, however, is a spatial average property
of the specimen, not a local property and hence, the space
charge effect may be neglected (i.e., the Debye length is
assumed to be sufficiently small compared to the grain size.)
The overall charge neutrality condition may then be written
for the present case (see Eq. 2.23) as

n=[Lag, |+2[Vp]-4[ V¥ | (4.8)

Neglecting the mobility of the donor impurities Lag,,
temporal variation of the electronic carrier density n may be
written as

én_, Vel _, ALVH:

/Tt A U E S + " .
ot o at gt 2Vdy HAVIvy (4.9

As the present system is essentially an electronic conduc-
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Fig. 4.9. Thermodynamic situation and expected diffusion
profiles of [V{] and [V ] with time upon an abrupt
change of oxygen activity at the surface of a specimen
x=0. Note that the surface is assumed to be always in
equilibrium so that [V} ][V 1*=const. and Dry<<
Do . From Ref. 30.
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tor (electronic transference number, t,~1) over the entire
a,, range of the present concern, as is clearly seen from Fig.
4.6, the local electroneutrality field will be negligible.
Hence, diffusion of each type of ionic defects proceeds in the
respective sublattices with no mutual coupling or

Jy.=DoVIVol 5 Jyy « =-DnV[Vi] (4.10)

where f)o and ]STi are the chemical diffusivity of compo-
nent O and Ti, respectively.

Assuming these chemical diffusivities to be constant for
small jumps of oxygen activity, one may obtain the solution

to Eq. 4.9 associated with Eq. 4.10 for the initial and bound-
ary conditions given in Fig. 4.9 as

(2i+1)* "Dt
A,
oo, k% 22(2J+1) [ 4a” }
(4.11)
with
- 2(IVle—[Val.) @12
2[Volo- [Volo)-4( [V, - [VEILL)
_4([V"ll ] _[ V"" ] ) (4.13)

N e (Volo-[Volo-4([VE], - [VEI)

where o, o, and o, are the mean conductivity at time t,
the initial equilibrium conductivity at t=0 and the final
equilibrium one as t — 0, respectively, 11, n, and n,, the cor-
responding densities of carrier electrons, and “2a” the thick-
ness of the present specimen that may be regarded as an
infinite slab in the present case.

It is noted that A, +A;=1 and their ratio R(EA,/A,) may
be regarded as a measure of the relative contribution of Ti-
diffusion and O-diffusion processes to the overall re-equili-
bration kinetics given the relaxation times (1, =4a’/n* Dk ) If
R>>1 or R<<1, the conductivity relaxation kinetics may be
represented essentially by either t,; or 1, respectively, that
is, one-fold kinetics follows. Otherwise, the kinetics may
have to be represented by both 1, and 1, that is, two-fold
kinetics.

The equilibrium defect structure for the present case is cal-
culated to be as shown in Fig. 4.6.%” In oxidizing atmospheres
(say, log a,,>-8) where the majority type of disorder is
ALV, ~[Lag,]>>[V5], R=ALVE VAVE] =2V Vs
( =2[Lag,] [VoD>>1 due to Egs. 24 and 26 (or
[ Ve =Kjape,); in reducing atmospheres (say, log

< 13) where n=2[Vg]>>[V{! ], R=2[V§! V[Vg]<<l.
In these Po, regimes, the conductivity relaxation kinetics
should appear to be 1-fold or with a single relaxation time,
namely, t;, and t,, respectively. In the intermediate oxygen
activity region, then, the overall kinetics may appear two-
fold. Thus, the kinetics will have to shift from 1-fold (1) to
2-fold (1, 7)) to 1-fold (1,,) as oxygen activity decreases from
a,,=1.

This is believed to be what has been observed in Fig. 4.7.
If it is the case, then one may fit the relaxation data to Eq.
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Fig. 4.10.D1i, Do and k (for oxygen exchange) vs. oxygen
activity at 1200°C as evaluated by using the speci-
men dimension as the_decisive diffusion length. >,
DBa from Ref. 32; ¥, D1 from Ref. 31.

4.11 to evaluate the chemical diffusivities. In the one-fold
kinetics region of 1, all the relaxation data could be suffi-
ciently precisely fitted to Eq. 4.11 with Ag~0, as depicted
by the solid curves in Figs. 4.7(a) and (b), thus, indicating
that the rate of surface reactions, Eqgs. 4.1 and 4.2 are
indeed fast enough compared with the chemical diffusion.

However, in the one-fold kinetics region of 1, in the reduc-
ing atmospheres, the surface reaction step has to be taken
into appropriate account, as in the undoped or acceptor-
doped cases,”"™* for a sufficient precision of the fitting.
The relaxations are, thus, fitted (solid lines in Fig. 4.7(a-e))
to the conventional solution similar to Eq. 4.1, but in 1-
dimension to evaluate ]30 and the surface reaction rate
constant k simultaneously.

All the results, Dri, Do and ka (for oxygen exchange) as
obtained in this way are compiled in Fig. 4.10. As is seen,
Do -values are on the order of magnitude of —-6~-4 (in cm?/
s) depending on oxygen activity. Upon comparison with the
Do -values for the undoped and acceptor-doped in Fig. 4.4,
one can recognize that the present Do values are quite rea-
sonable as the chemical diffusivity of oxygen in BaTiO,. In
addition, the surface reaction rate constants “k” are also
comparable in magnitude as well as in trend with those for
the undoped or acceptor-doped systems,” see Fig. 4.2.

Here, however, one should note that the values for f}Ti,
being in the range of 10"*~107° cm?¥s, seem too large in com-
parison with the two reported values for the chemical diffu-
sivity of the cations in BaTi0,.*"*® see Fig. 4.10. Remem-
bering that in the evaluation of Dmi via Eq. 4.11, the speci-
men thickness 2a (=1.2 mm) has been employed as the deci-
sive diffusion length, it indicates that the decisive diffusion
length should rather be the grain size than the specimen
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Fig. 4.11. Chemical diffusivities re-evaluated by taking as
the decisive diffusion length the sample dimension for
Do and the mean grain size for Dri. %, DBa from
Ref. 32; ¥, Dti from Ref. 31.

thickness.
Simply assuming that the specimen consists of spherical
grains with a mean radius “o,” Eq. 4.11 is modified to be?”

0-6._, 8 1 2j+1)*n"Dot
=A,= exp ;
C,—C,, 0W2§(2j+1)2 [ 422

o

o 2 2

+ATi%z%exp[—Jn—]3T—il:} 4.12)

b/ j=1] o

Reanalyzing all the experimental data for the two-fold
kinetics region and higher oxygen partial pressure region to
this modified solution (solid lines in Fig. 4.7(a-€)), one
obtains the results as shown in Fig. 4.11 along with all
those literature data.®*

As is seen, the re-evaluated values are now in a satisfac-
tory agreement with the reported chemical diffusivity val-
ues.®"? It may, thus, be concluded that the two-fold kinetics
is due to the chemical diffusion of oxygen and cation, say, Ti,
the chemical diffusivities of which differ by ca. 8 orders of
magnitude from each other.

In sum, what happens in the donor-doped BaTiO, is that
the oxygen sublattice has first been equilibrated with a deci-
sive diffusion length of the overall specimen dimension, and
the cation sublattice subsequently starts to re-equilibrate
from grain surfaces, that is, with the grain size as the deci-
sive diffusion length. Whether or not the two-fold kinetics is
observed, seems to be determined by the combination of the
relaxation times: If they are not much different, say, let
1o~y or in other words, 2a/a~/Do/Dri, then it would not
be possible to observe or discern the two-fold kinetics irre-
spective of the amplitude ratio R(=A/A;) in Eq. 4.12. For
the specimen in question, 2a‘o~ 103 and ﬁo/DTiz 10*,

16 <14 12 0 8 -6 4 2 0
logag

Fig. 4.12. Thermodynamic factors (|®A|) for O (solid line)
and Ti (dotted line) vs. oxygen activity as evaluated
from the equilibrium defect structure of 1 m/o La-
doped BaTiO, in Fig. 4.6. From Ref. 30.

thus, observable.”® If 1 <<t the two-fold kinetics should be
observed in principle, but no matter what R value is, it
would take too long to observe, or there would be little
symptom of the cation sublattice relaxation in experimen-
tally viable time. If R<<1, on the other hand, the cation
sublattice relaxation can hardly be detected experimentally,
even if there occurs the relaxation. This may be the case of
undoped or acceptor-doped BaTiO, where the kinetics only
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log(DV/cm"ls'l)

1
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-6 -14  -12 -10 -8 -6 -4 -2 0 2

loga,

Flg 4.13. Defect diffusivities of O and Ti vacancies, Dy, and

Dy, vs. oxygen activity at 1200°C. The solid lines, the

average values.
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appears one-fold and very fast.

4.3. Defect Diffusivities

-Again according to Wagner,” the chemical diffusivities in
Eq. 4.10 may be written for an electronic conductor system
(ty=1)as

o)

28)

(4.13)
RTAIn[V;] 2 \aln[Vg)
and
- Ay B olnag,
Dr; DVTi(RTaln[ v ]) - DVTi(aln[ v ]) (4.14)

due to the identity Vpr,+ 2VUo=Vpr0,=0 in the pres-
ence of the second phase. The quantities within the paren-
theses, the thermodynamic factors are nothing but the
inverses of slopes of the curves for [V ] and [V ], respec-
tively, in Fig. 4.6. They are graphically evaluated as in Fig.
4.12.

On the basis of Egs. 4.13 and 4.14, one can, then, evaluate
the defect-diffusivities of Vi and VY4 , Dy, and Dy,
respectively. The results are finally as shown in Fig. 4.13.
As is seen, each defect diffusivity turns out to be fairly flat
against oxygen activity, as expected. Their values at
1200°C, Dy,;=1.4x107° cm¥s ; D, =l.4x 10" em¥/s are quite
reasonable in magnitude, upon comparison with the litera-
ture values if available. It should be pointed out that defect
diffusivity of the cation vacancy has been evaluated for the
very first time in BaTiO, and the like. Nevertheless, it is
still yet to be elucidated which of Vi or Vj, is in the
majority, and which is more mobile whether doped or
undoped. It has usually been believed that Ti*" is immobile
relative to Ba™ for the energetic reason.’” A recent study,”
however, shows that the impurity diffusivities of Sr, that is
replacing Ba, and Zr, that is replacing Ti, are comparable to
each other.
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