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INFERENCE ON THE SEASONALLY COINTEGRATED
MODEL WITH STRUCTURAL CHANGES!

DAEGUN SonNG! AND Sinsup CHO?

ABSTRACT

We propose an estimation procedure that can be used for detecting struc-
tural changes in the seasonal cointegrated vector autoregressive model. The
asymptotic properties of the estimates and the test statistics for the param-
eter change are provided. A simulation example is presented to illustrate
this method and its concept.

AMS 2000 subject classifications. Primary 60G15; Secondary 91B24.
Keywords. Seasonal cointegration, seasonal cointegration rank test, seasonal error cor-
rection model, structural change.

1. INTRODUCTION

Detection of the change points in time series has been an important issue and
has been studied by many authors. See Box and Tiao (1975) for the level change
in the nonstationary time series, Wichern et al. (1976) for the variance change
in the AR(1) model, Picard (1985) for change of mean and autocovariane, Kim
et al. (2000) for the parameter change in GARCH(1,1) model, and Wang and
Wang (2006) for the change in long memory parameters, among others.

Since Hylleberg et al. (1990) first analyzed the seasonal cointegration system,
several approaches for detection of changes in the system have been developed.
Seo (1998) proposed the Lagrange multiplier (LM) test for the detection of struc-
tural changes of the cointegrating vector and the adjustment vector. Inoue (1999)
derived a rank test for cointegrated processes with a broken trend, and Hansen
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(2003) generalized the cointegrated vector autoregressive model (VAR) of Jo-
hansen (1988) to allow for structural changes when the time of the change points
is known.

In this paper, we extend the method of Hansen (2003) and propose an esti-
mation procedure of the structural change in the seasonally cointegrated VAR.
We focus mainly on complex roots because the estimation and the test for a
parameter change with the root at 1 is identical to that of Hansen (2003).

This paper is organized as follows. Section 2 contains the statistical for-
mulation of structural changes in the seasonal cointegrated VAR. Estimation of
parameters, asymptotic properties of estimators and test statistics for the param-
eter changes are provided in Section 3. Section 4 presents the simulation results
and Section 5 presents the conclusion. The proofs are presented in Appendix.

2. THE STATISTICAL MODEL

For seasonal cointegration with constant parameters, Johansen and Schaum-
burg (1999) formulated the n-dimensional process of order k, VAR(k) for the
quarterly data as follows:

2
AuXe =Y aifiXie + 2arBy + 181 XRt + 2(arB) — arBp) X1,
i=1
k—4
+) T;04Xj+¢Di+e, t=1,...,T, (2.1)
j=1

where ¢; ~ iid N(0, Q), D, consists of deterministic terms, and
X1t = %(Xt—l + X2+ X3+ Xi—4),
Xoy = —E(Xt—l — Xi 2+ Xi—3 — Xi—4),
XRt = i(Xt—2 — Xi-4),
Xre = —i(th - Xi-3).

Note that X;; and X3, are integrated at zero and 1 /2 frequencies, and X Rt and
X1+ are the real and imaginary parts of the integrated process at 1/4 frequency,
respectively.

If we permit parameters to change their values at the change points T3, ...,
Tin—1, where 0 <T1 < --- < Tp,,—1 < T, the seasonally cointegrated VAR model
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with structural changes can be written as

2
AgXe =Y ai(D)Bi(t) Xis* + 2{ar(t)Br(t) + ar(t)Br(t) } X3, + 2{ar(t)B1(t)

=1
k—4

—aI(t)ﬂR(t),}X;’t + Z FjA4Xt._j +¢Di+e, t=1,...,T. (2.2)
J=1

The dimensions of o; and §; are n x r; and n; X r;, respectively, where n; = n+1
is the dimension of XZt with ¢ = 1,2, R and I. Variable Xi*:t comprises X;; and
restricted deterministic variables, {e;} is a sequence of independent Gaussian
variables with mean zero and variance €(t), and

a1(t)Bi(t) = a11Biilie + - - + camBimlmis
az(t)Ba(t)’ = ag1Ba1lie + - - - + imBomlme,
ar(t)Br(t) = ar1Brilit + - + CRmPRmImt,
ar)B1(t) = anfnlic + - + armBrmlme,
ar(t)Br(t) = ariBrlit + -+ + 0RmBrmlmt,
ar(t)Br(t)’ = anBrilit + - + armBrmlmt

Ty =T1il14+ -+ Comglme, (= 1,...,k— 4),
() = @1l14+ - + Prulims,

Q) =Ml + -+ Qulme,

where
lJyt:]‘(T7-1+1StSI})7 j:]-v"'yma (T0:O3 Tm:T)

is an indicator function as defined in Hansen (2003). It is noted that the rank
of cointgrated vector i (t=1,2,R,I and j = 1,...,m) may vary across the
subsamples. Therefore, the rank of o;(t)3;(t) may change across the subsamples
to permit a change in the cointegration rank r; while the dimensions of other
parameters are constant.
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Let
Ay = (oa1,...,am1), Az = (a12,...,0m2),
AR = (alRa" . aamR)a AI = (a117' .. 7am1)a
Bu 0 --- 0O Bz 0 --- 0
B, = 0 Bn 0 :  By= 0 B2 0 : ,
: 0 .0 0 .0
0 0 - Bm 0 0 - Bm2
fir 0 --- 0 Gir 0 .-~ 0
Bp=| 0 Ar 0 By = 0 Por 0 ,
: 0 .0 0 .0
0 0 - Bmr 0 0 - B
C’:(wl,"'a"/}m)a ¢j=(rj,1,---,rj,k—4,‘1>j), j:].,...,m
and

Zot = DNy Xy :nx 1,

Zie = L X7y o Ime X)) ¢ (mmng) x 1,
Zot = (11,tX;,t’7 e, lm,tX,,*%t') : (mny) x 1,
Zrt = (11,tX;{,t/7 e, lm,tX:n,tl) : (mmy) x 1,
Zre = (M X7y Ine X ) ¢ (ming) x 1,
Znt = (DaX{_q, o, DaX)_jya, DY) img x 1,
Zop = (W Zlgy ... 1 ZL,) ¢ (mmg) x 1.

Then, (2.2) can be written as

2
Zot = Y AiB|Ziy + 2(ARBjy + ArB}) Zp; + 2(ArB; — ArBR)Z1
i=1
+Cth+6t, t:].,...,T (23)

and it is the same form as (2.1).
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For each of the m equations in (2.2),

2
DXy =) aaBiXid® + 2arBr + anbi) Xk, + 2(ar1Bn — anBr) X5,
i=1
k—4
+ Zl‘l,jA4Xt_j +d1Di+e, t=1,...,T71,
Jj=1
2
AgXe =Y iaBipXis" + 2naBy + 012810) Xy + 2(0maBy — 01280) X5,
i=1
k—4
+ ZFQ’jA4Xt_j +doDi 46, t=T1+1,...,T5,
=1
2
DaXy = CimBim Xiz" + 20 RmBrm + ArmBm) Xft + 2(@RmBim
i=1
k—4
_aImﬂ}{m)X;,t + Z Fm,jA4Xt_j + ¢th +e€, t= Tm—1+ 1,... ,T.
=1

Regressing Ay Xot, X7y, X3, X5, and X7, on Z?;f L jAsXi—j and Dy, we
obtain the corresponding residuals ro;, 71z, 7ot, TRt and 77, respectively. Since
the MLEs of «;(t)3;(t) are equivalent to the estimates of the following equations:

2
Tot = Z a1 Biyrit + 2(amBry + anBn)rre + 2(@r1 B — anBr)T
i=1
-|-7“5t, t=1,...,T1,
2
Tot = Z ai2Biarit + 2(oraBry + ar2B12)T Rt + 2(ar2Br2 — 012B8R2)T 1
i=1

+re, t=T1+1,...,T5,

2
Tot = Z aimﬁz{m"'it + 2(0‘Rmﬂ5%m + aIm/B/Im)TRt + 2(0‘Rmﬂ}m - almﬂ}{m)"']t
i=1

+7et, t:Tm—1+1a'”,T7



506 DAEGUN SONG AND Sinsup CHO

using the notation for a;(t)5;(t) as defined previously, we obtain

2
Tot = Z ai(t)Bi(t) i + 2{ar(t)Br(t) + ar(t)Br(t)'}rr: + 2{ar(t)B:(t)
i=1
—ar(®)Br®) yrrs + ret, t=1,...,T. (2.4)

Again, for each of the m equations in (2.4), by regressing roz, Tr¢, 77 OD 715, Tot,
we obtain the residuals uge, up:, up and (2.5) as follows:

uot = 2{ar(t)Br(t) + ar(t)Br(t) Jur: + 2{ar(t)B:(t) — as(t)Br(t) urn
tug, t=1,.... T (2.5)

We can rewrite (2.5) as

Upt = 2(ARB}3 + A[B})UR,: + 2(ARB} — A[B}z)U[t + Uy,
t=1,...,T, (2:6)

where

UOt = A4ut n X l,
/ /
Urt = (Liguky s lmgugy ) : (mng) x 1,

U[t = (11,tu;’t', PPN 1m,tu;,t') N (mnl) X 1,

which is the same form as (2.1) without the structural change. For estimating
the parameter at frequency 1/4, we use (2.6) to obtain the generalized reduced
rank regression (GRRR) estimator in the next section.

If we concentrate on the parameters at frequency zero, we have

Ugt =AlBlUft+ e*t’ t=1,...,T, (2.7)

where Ug, and Uj; can be obtained for each of the m equations in (2.4) by re-
gressing ro¢, 1t ON Tat, TRe, T7¢. It should be noted that (2.7) has a form that is
similar to (2) of Hansen (2003). By applying procedures similar to those used in
Hansen (2003), we can estimate the parameters A; and B in (2.4).

3. ESTIMATION AND THE ASYMPTOTIC RESULT

Estimation of the parameters in (2.6) can be done by using the GRRR tech-
nique of Hansen (2003).
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Since a cointegrating vector is not unique, multiplying it by a nonzero constant
yields a more cointegrating vector. In order to obtain a unique parameterization,
we adopt the following structures of Br and B; using parameter restrictions of
the form vec(Br) = Hryr + hg, vec(B) = Hror + hy, vec(Ag) = Gryg and
vec(Ar) = Gry1, where vec(-) is the vectorization operator. Matrices Hgr and
Hy are known as mpy(r1 + -+ + rp,) X p, matrices, hg and hy are known as
mpy(ry + -+ rp) dimensional vectors, ¢r and ¢y are vectors that consist of j
parameters, Gg and Gy are known as p(ry +- - - + rp,) X py matrices and ¢g and
Yy are vectors with py, free parameters. These restrictions are equal to those of
Hansen (2003). See Hansen (2003) for the advantages of these restrictions. For
example, consider the bivariate process with a seasonal cointegrating rank r = 1
that consists of two subsamples m=2. In this setting, Bg = diag(8gr1,Or2),
where Bp1 = (Br,1,1,8Rr1,2) and Brz = (Br2,1,Br22). If Br1,1 = Bra2,: and
Br12 = BRr2z2, then

I
10000010 BRr,1,1
Hp = - L,
. (01000001)’ i (ﬂ&m>’
’
th(oooooooo).

If we impose the normalization 81,1 = Br2,1 = 1, then

Ho — 01000000 I [ Br12
B= 00000001/ P27\ Bran )’
!

hR=(10000010).

If we impose the normalization 8r11 = Br21 = 1 and cointegrating vectors
unchanged, then

!
He=(01000001), ¢r=Fraiz
/
hr=(10000010)".
If the cointegrating vectors are not changed but the adjustment vectors are
changed, this restriction is useful in estimating the parameters. We also estimate
the adjustment vector ar and aj by using Gg and Gj. These restrictions enable

us to estimate adjustment vector a and cointegrating vector 8 if only one of the
vectors o and [ is changed in the cointegration system.
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Assumptions 3.1 through 3.3 are based on Hansen (2003) for the nonseasonally
cointegrated model, which is still applicable to seasonally cointegrated models.
Assumption 3.1 is needed to ensure the assumed rank of A and B. Assumption
3.2 is necessary for testing some of the hypotheses, and Assumption 3.3 is needed
for the construction of a useful iterative algorithm to estimate the model.

AssSUMPTION 3.1. Matrices Hg, H;, Gr and G have full column ranks and
Hg, Hy, GR, Gr, hg, and hy are such that Ag, Ay, Br, and By have a full column
rank for all (Y5, Y7, ¥R, ¢7)’ € R, except on a set with Lebesque measure zero,
where n is the total number of columns in Hg, Hr, Gr and Gj.

ASSUMPTION 3.2. Matrices Hg, H;, Ggr and Gy and the vector hg and h;
are such that v¥g, 91, pr and ¢ are identified.

AsSUMPTION 3.3. Parameters g, vy, ¢r, or and 6 are variation free, i.e.,
the parameter space for (1g,pr,0) is given by a product space O, x O, x Oy,
where O is the parameter space for x = 9, @g or  and the parameter space for
(¥r1,1,8) is given by a product space Oy X O, x By, where O, is the parameter
space for kK = vy, ¢y or 6.

For the estimation, we impose the following restrictions of the form:

vec(A) = (1222?1};)) ) =Gy, (3.1)
where
(53 (3
and
vec(B) = (1’;@’3) ~ Hé+h, (3.2)
where

_[Hr O [ ¢r _ [ hr
o () o= (o) o= ()
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and

Uo = (Uoy,-..,Uor), Ugr= (Ugy,--.,Urr),
Ur=(Un,...,Urr), Ug= Ua,-..,U),
r= dia‘g(ITl ® Qla IT2—T1 ® QZ, v aIT—Tm_l ® Qm)’

!
Un =2 (UrBr ® Ip)' + (U;Br ® Ip)
? (UrBr® L)' + (UiBr® I))' | °

(U ® A1) — (U} ® AR)| Kpy )

and Kp, , is the communication matrix, uniquely defined by K, ,vec(4) =
vec(A’) for any p; X 7 matrix. Then, (2.6) can be written as

Uy = 2(ARBIR + A[B})UR + 2(ARB} — AIB}z)UI + Ug. (3.3)

THEOREM 3.1. Let parameters A and B be restricted by (3.1) and (3.2) and

assumptions 3.1 and 3.3 hold. Then, the mazimum likelihood estimates of A, B
and Q(t) satisfy

vec(A) = G
= G[G'UpX UG G’ UL Svec(Uy), (3.4)
vec(B) = Hp + h
= HH'UAS 'WUAH) ' H'U Zvec(Up) + R, (3.5)
T}
Q=T -T)" Y. UalUly, j=1,...,m, (3.6)

t=Tj_.1—|—1

where Uy = Up; — 2(1213353 + A[B'I)URt — Q(ARB} — flIBe}{)UIt. The mazimum
value of the likelihood function is given by

T
An Ar Be. Br. € A Tn
Lmax(AR, AIa BR7 BI7 Q(t)) = (27T)Tn/2 H |Q(t)|_l/2 exp (—7) i

The parameter estimates can be obtained by iterating on these three equations
(3.4), (3.5) and (3.6) until they converge by using some initial values of the
parameters. For a given value of B, selected properly in the first iteration, the
estimates of A and then Q are computed. We can compute a new B and a
likelihood function and repeat this procedure until the value of the likelihood
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function converges. As being pointed out by Hansen (2003), the local maxima
may exist. Hence, different initial values of the parameters should be tested
to check whether the algorithm converges to the same value of the likelihood
function.

We need Assumption 3.4 to guarantee the process to have a (quarterly) sea-
sonally cointegrated relation in each subsample. For the general assumptions
used in the seasonal cointegrated case, see Johansen and Schaumburg (1999).

AssUMPTION 3.4 (Johansen and Schaumburg, 1999). Let A;(z) = I-II; 12—
Hj,222 — = Hj,kzk, wherez € C,j=1,...,m,
(i) the roots of [A;(z)| = 0 satisfy |2| > 1+ 6 or z € (1,1, +i,—i) with |z| =1
for some § > 0 and A;(z) = —o; 0}, and
(ii) |Oz;-:“_A(zi)ﬂj’iL| = 0, 1 = 1,2, 3,4 and aj.l,ﬁj_l, aj.z,ﬂj.z, aj.3,ﬁj.3 and
@;j 4, 0j.4 are the adjustment vectors and the cointegrated vectors in zero, 7, m/2
and —m/2, respectively.

Hansen (2003) used the Granger’s representation theorem when a structural
change exists by using a closed-form expression for the I(1) process in Hansen
(2000), and obtain the distribution of 3 after the structural change. Although
we do not propose an explicit form of the distribution of B after the structural
change, Theorem 3.2 is still necessary to prove Theorem 3.3. Details of this proof
are given in Appendix.

THEOREM 3.2 (Cousistency). The mazimum likelihood estimators given by
(3.4), (3.5), and (3.6) in Theorem 8.1 are consistent for the true parameters.

THEOREM 3.3 (Asymptotic distribution of LR tests). Let My and M; be two
models defined by restrictions (3.1) and (3.2) both satisfying assumptions 3.1 —
3.4, and both having the same cointegration rank in each subsample. If My is a
submodel of My with q fewer parameters, then the asymptotic distribution of the
likelihood ratio test of My, which is a test against My, is x* with q degrees of
freedom.

For the computation of the degrees of freedom in Theorem 3.3, we use the
following lemma by Johansen (1996) and Hansen (2003).

LEMMA 3.1. The function f(z,y) = zy/, wherez isnxr (r <n) and y is
n1 x 1 (r < ny), is differentiable at all points with a differential given by

Df(z,y) = z(dy)’ + (dx)y/,
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where dy is n x r and dz is ny x r. If x and y have full rank r, then the tangent
space at (x,y) given by {z(dy)' + (dz)y’ : dx € RM*" dy € R"™™"} has dimension
(n+n; —r)r.

From Lemma 3.1, we can observe that the number of free parameters a(t)3(t)
is Y i (n 4+ ny — r;)r;. For example, let m=2, X! = (X1;, X3;) be a bivariate
process and r; = ro = 2 with hypothesis

HO L 11 = *2 and ﬂll = ﬂlg vS. H1 : not Ho

then the degrees of freedom is (n +n; —r)r = 3.

See Hansen (2003) for more details for computing the degrees of freedom
under different situations.

4. SIMULATION STUDY

In order to examine the properties of the estimators, we perform a simulation
study. Let m=2 and X| = (Xj4, X2¢) be a bivariate process. We consider the
following model for the simulation study.

2
Ay Xy = Z ai(t)Bi(t) Xt + 2{ar(t)Br(t) + as(t)B1(t)'} Xrt + 2{ar(t)B:(t)

—ar(t)Br(t)}X1: + &
2

= [Z o181 Xit + 2(ar1Br1 + onfBi) Xy
i=1

+2(ar1 By — anBry) X1 + € li<n

2
+ [Z @285 X1t + 2(r2Bro + 12872) X Rt

i=1

+2(ar2Bry — a128k2) X1t + €] [>T -

Parameter values for the simulations are given in Table 4.1. Model 1 allows
all the parameters to change except for the nonseasonally and seasonally cointe-
grated vectors, and Model 2 allows all the parameters to change except for the
nonseasonal and seasonal adjustment vectors.

Table 4.2 and Table 4.3 are based on 1,000 replications. Since the property
of the estimators at frequency 1/2 is the same as that at zero frequency, we did
not deal with the estimators at frequency 1/2. We use the following restrictions
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TABLE 4.1 Parameter values for Model 1 and Model 2

Model 1 Model 2

Before Change After Change Before Change After Change

(T— Tl) (T=T1+1,...,T) (T:1,,,.,T1) (T:T1+1,.,.,T)
Q11 [ 1,—0 5] x12 [ 1 —0. 7]/ 11 [-—1,—0.5]/ a12 ['—1,—0.5]/
B | [1,-1) Bz | 1,-1} B | [1,-1) Bi2 | [1,-0.8]
as1 | [1,—04] oz | [1,-0.5] az | [1,-05] | az | [1,-05]
Pa1 | [1,-0.7) B2 | [1,-0.7) B | [1,-0.7) B2 | [1,-0.8]
QaR1 [1,0 2] QR2 [l,O 5] QaR1 [1,04]/ QR2 [1,0.4]/
Br | 1,-1) Brz | [1,-1] Br1 | [1,-1) Bra | [1,-0.9]
o [ 1,—1] g2 [ 04, 09]' arl [ 1,—1] ar2 [—1,—1],
B | [1,-0.8) Brz | [1,-0.8) B | [1,-0.8) Br2 | [1,-0.7)

1 03 1 05 1 0.3 1 05

h (0.3 1) 2 (0.5 1.5) i <0.3 1 ) i (0.5 1‘5)

TABLE 4.2 Simulation results of the GRRR estimation for Model 1 based on 1,000 replications
for each sample size T

Ty =T, =50 T =T =100 Ty =T, =200 Ty =T, =400
True value Mean STD Mean STD Mean STD Mean STD
a11,1 = —1 | —1.0866 0.3087 | —1.0590 0.1831 | —1.0259 0.1255 | —1.0090 0.0801

o112 = —0.5 [ =0.4726 0.2276 | —0.4849 0.1679 | —0.4903 0.1180 | —0.4980 0.0769
a12,1 = —1| —1.0004 0.2661 | —1.0013 0.1488 | —0.9989 0.0948 | —1.0027 0.0659

a2 = —0.7 | —0.6245 0.2446 | —0.6509 0.1537 | —0.6788 0.0947 | —0.6881 0.0602

Bi1=1 1.0000 0 1.0000 0 1.0000 O 1.0000 0

B2 =-1]-0.9933 0.1229 | —0.9999 0.0013 | —1.0001 0.0009 | —1.0000 0.0006
agry,1 =1 0.9524 0.1208 0.9791 0.0826 0.9887 0.0560 0.9947 0.0390
apr12 = 0.2 0.2183 0.1219 0.2066 0.0808 0.2066 0.0542 0.2040 0.0396
a1 =—1| —0.9491 0.1528 { —0.9832 0.1074 | —0.9900 0.0737 | —0.9947 0.0501
ari2 =—1 | -=1.0096 0.1477 | —1.0050 0.1103 | —1.0031 0.0715 ] —1.0024 0.0509
apre1 =1 1.0033 0.0809 1.0037 0.0691 1.0016 0.0532 1.0020 0.0416
arz2 = 0.5 0.5098 0.0996 0.5042 0.0831 0.5056 0.0637 0.5021 0.0487
are1 = —0.4| —0.4068 0.0730 | —0.4035 0.0590 | —0.4001 0.0497 | —0.3976 0.0399
a2 =—0.9| —0.8960 0.0852 | —0.9005 0.0760 | —0.8971 0.0625 | —0.8988 0.0493

Br1=1 1.0000 0 1.0000 0 1.0000 © 1.0000 0
Br2 = —1]—0.9997 0.0061 | —1.0002 0.0045 | —1.0001 0.0028 | —0.9999 0.0017
Bri=1 1.0000 © 1.0000 0 1.0000 O 1.0000 0

Brz2=—-08|—-0.8002 0.0062 | —0.8001 0.0042 | —0.8000 0.0029 | —0.7999 0.0016
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TABLE 4.3 Simulation results of the GRRR estimation for Model 2 based on 1000 replications
for each sample size T

Ty =T2 =50 Ty =T =100 Ty =T, =200 T = T, = 400
True value Mean STD Mean STD Mean STD Mean STD
o1, = —1 | —0.9965 0.0487 | —0.9983 0.0411 | —0.9996 0.0342 | -1.0013 0.0318

aie = —0.5 | -0.5047 0.04 —0.5011 0.032 | —0.5001 0.0283 | —0.5013 0.0256

Biiai=1} 1.0000 0 1.0000 © 1.0000 0 1.0000 0
Bz =1 —1 0.0014 —1 0.001 —1 0.0007 —1 0.0005

Bi21=1| 1.0000 0 1.0000 0 1.0000 0 1.0000 0
Bi22 = —0.8 —0.8 0.0021 —0.8 0.0015 -0.8 0.001 —0.8 0.0007

ar1=1} 09979 0.0575| 0.9978 0.0393 | 0.9983 0.0275| 0.9999 0.0205
ar2=04]| 0.4085 0.0511 0.4053 0.0357 | 0.4015 0.0254 | 0.4013 0.0183
ar1=-1|-0.9774 0.0938 | —0.9869 0.0636 | —0.9942 0.0446 | —0.9964 0.0325
are=-—1|-1.0173 00862 | —1.007 0.0617 | —1.0035 0.0429 { —1.0011 0.0288

Bri1 =1 10 10 10 10
Brie=—1| —1.001 0.0103 | —1.0001 0.0062 | —1.0001 0.0041 | —1.0001 0.0023
Bra=1 10 10 1 0 10
Br12 = —0.8 | —0.8003 0.0112 | —0.7999 0.0073 —0.8 0.0041 —0.8 0.0024
Br21 =1 10 10 10 10
Br22=—0.91 —0.9011 0.0114 | —0.9006 0.0068 | —0.9003 0.004 | —0.9002 0.0023
B2y =1 10 10 10 10

Bra,2 = —0.7 | —0.7003 0.0104 | —0.7006 0.007 | —0.7004 0.0038 [ —0.7003 0.0021

when the cointegrating vectors are not changed:
!
Ig=(01000001), 0;=Bi12,

/

@:(10000010)

where 7 = 1, R,I. When the cointegrating vectors are changed, we use

0 - 01000000 I o Bj1,2

7= \o00000001) " T\ B2/’
/

m:(10000010).

It is observed that the estimators approach to the true values and the stan-
dard deviations decrease as the sample size is increased. We can observe that the
standard deviations of the nonseasonally and seasonally cointegrated vectors de-
crese much faster than those of the nonseasonal and seasonal adjustment vectors
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TABLE 4.4 Means and quantiles of the test statistic of Theorem 3.8, under the null hypothesis
at zero frequency and ot 1/4 frequency

Frequency 0 Mean and Quantile
Mean 0.01 0.05 0.25 0.75 0.95 0.99
True 1 0.000 0.004 0.102 1.323 3.841 6.635

Sample | Th =T> =50 | 1.2732 | 0.0002 | 0.0047 | 0.1291 | 1.7055 | 4.7482 | 8.6111

Size T, =T> =100 | 1.1081 | 0.0002 | 0.0048 | 0.1119 | 1.4526 | 4.2503 | 7.1033
Ty =T, =200 | 1.0441 | 0.0001 | 0.0037 | 0.1068 | 1.3863 | 3.9771 | 6.9925
Ty =T, =400 | 1.0064 | 0.0001 | 0.0036 | 0.1035 | 1.3213 | 3.8560 | 6.5048

Frequency 1/4 Mean and Quantile
Mean 0.01 0.05 0.25 0.75 0.95 0.99
True 2 0.020 0.103 0.575 2.773 5.991 9.210

Sample | 71 =T> =50 | 2.4951 | 0.0249 | 0.1239 | 0.7186 | 3.4353 | 7.5114 | 11.9242

Size Ty =T> =100 | 2.2342 { 0.0196 | 0.1148 | 0.6575 | 3.1149 | 6.6917 | 10.1802
Ty =T, =200 | 21032 | 0.0216 | 0.1132 | 0.6241 | 2.9003 | 6.2436 | 9.6961
Ty =T> =400 | 2.0546 | 0.0191 | 0.1061 | 0.6077 | 2.8504 | 6.1009 | 9.3420

as we increase the sample size. This reflects the fact that the distribution of the
(seasonal) cointegrating vector has a T-consistency and the adjustment vector
has a v/T-consistency.

In order to observe the effect of the sample size on the asymptotic result of
Theorem 3.3 we use Model 1 which test the m structural changes against the
m + k structural changes and the linear parameter restrictions in the presence of
the structural changes.

We can rewrite Model 1 using (2.7) as follows:

-1 -1
UL+ UL, t=1,...,T,
(—0.5) ‘thl + <—0.7> {t>T1j| (1 ) 1+ Vet

1 03 1 05
Udlar, ~N <0.3 1 ) and Ullp, ~ N (o.s 1.5)'

Hence, under the assumption of a7 # a2, our hypothesis becomes

Ho:pu=p12 vs. Hy: fu# b2

and the test statistic is

*
Uoe =

where

-2 10g Lmax,l/Lma.x,O “1’ X?l) .
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10 10
Frquency Zero, T1=T2#60

Frquency 1/4, T1=T2=50

Test Statistic
w

Test Statistic
(3,1

Cﬁi—Squarea) Cﬁi-Square&)

”

Frquency Zero, T1=T2=1(), Frquency 1/4, T1=T2=100,

Test Statistic
L.}

Test Statistic
(4]

C?\i—Squarea) Cﬁi-Square&)

Frquency Zero, T1=T2=2Q Frquency 1/4, T1=T2=200

Test Statistic
(4]

Test Statistic
(4]

chi-squarel) chi—square?)

-'l *
Frquency Zero, T1=T2=400 ,»= " Frquency 1/4, T1=T2=400

Test Statistic
(¢}

Test Statistic
(4]

8 10 0 2 C?ﬂ—Square?Q)

Cﬁi—Squarea)
FIiGURE 4.1 Q-Q plot of the test statistic of Theorem 3.8 under the null hypothesis at zero
frequency and at 1/4 frequency.

Using (2.6), Model 1 can be rewritten as follows:

1

1
o =2 | \ ( -1)
ot 0.2 t<T1+ t>T) 1-1

+ +

B t<T1 (1—0.8) Ut

t>T1

+2 0.2 L<T1 5 L (1_0‘8)

_ + t>T1 (1 —1) Ure + Ut

— t<T1
witht=1,...,T, where

i 1 0.3 1 0.5
Udlicr, ~N 03 1 ) Uilesr, ~ 0.5 1.5



516 DAEGUN SONG AND SINsuP CHO

Under the assumptions that ag; # ags and oy # aje, the hypothesis becomes

Ho : Br1 = Br1 and 11 = Brz vs. Hi:PBri # Br1 and Bn # Bra

and the test statistic is

d
—2log Lma.x,l/Lmax,O — X%z)- (4'1)

From Table 4.4 and Figure 4.1, we can observe that the finite sample critical
values are always larger than their asymptotic ones, and that the difference in
the values between the asymptotic and finite sample distributions are significant
when the sample size T is small.

5. CONCLUDING REMARKS

In this paper, we extend the method of Hansen (2003) to the seasonal model
and propose an estimation procedure for the seasonal cointegrated vector au-
toregressive model permitting structural changes when change points are known.
This estimation procedure enables us to impose restrictions on the seasonal coin-
tegrating vectors and the adjustment vectors. The restrictions also enable us to
estimate the adjustment vector @ and the cointegrating vector 3 in the cointe-
gration system. We also show that the asymptotic distributions of the likelihood
ratio test for m structural changes against m+k structural changes and that of
the linear parameter restrictions in the presence of structural changes are x? in
both cases.
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APPENDIX

LEMMA A.1. From the definitions below:

/
Un — o[ (UrBR® L) + (U1B1 ® Ip)’
B (UpBr ® L) + (U}Br® L) |

Usa=2 ((Ur ® Ar) — (U7 ® AD)|Kp, 1) Ia
([(UII{ ® AI) — (U} ® AR)]KPI’T.),
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we have the identities (A.1), (A.2), (A.3) and (A.4) as follow.

(i) US04 = Uaaa1y Uaaqz) , (A1)
Uaar) Uaae)

where

T
Usagyy =4 _[(ARQ(t) AR ® UrUp) — (ARQ(1) L4} @ URUY})
t=1

— (A7Q(t) T AR @ UrUR) + (A1) A7 @ U UY)],

[(ARQ(t) AT ® UrUg) + (ARQ(t) " AR ® UrU})

M=

Ugape =4
t

Il
—_

— (A1Q(t) T AR @ UiUR) + (A70(t) P AR @ UrU7)],

[(A7Q(t) ™ A% ® UrUg) — (A722(t) " A7 © URUY)

M’ﬂ

Ugapry =4
t

RQ(t) AR @ UUR) + (ARQ(H) AT @ UUY)],

Il
—~~ =

Usaz) —42 (A7) "L A7 ® UrUp) + (A79(t) ' AR ® UgU})
t=1

+ (ARQUt) T A7 ® UrUg) + (ARQU(t) ™ Ap ® UrUp)].

(’LZ) U}lgz—lUB — UBB(ll) UBB(lZ) ) (AQ)
Ugg21) UB(22)

where

T
Usp1) Z (BrUrUpeBr ® Q(t)™") + (BRUrUp, Br @ Q(t) ™)
+(BlUnUgBr® Ut)™") + (BiUnU7,Br ® Q(t)71)],

T
Upp(z) = 4 ) _[(BRUrUp,Br ® (1)) — (BRUr: U7 Br ® (1) ™)
t=1

+ (BiUrUp:Br ® Q(t)™1) — (B{Ur U7, Br @ Q(t)71)),

T
Usp@y) =4 Y _[(BiUr:UR,Br ® Q(t)™") + (BjURUpBr @ Q(t) ™))
t=1

— (BRUrUp,Br ® Q(t)™") + (BrUnUpBr @ Q(t) 1),
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T

Usp@zy =4 Y _[(BiUrtUpBr ® Q(t)™") + (BjUrUf,Br ® QUt) ™)
t=1

— (BRUnUR:Br @ Q(t)™Y) 4+ (BRU U, Br @ Q(t)™1)].

(i) UYE ™ vec(Uy (A.3)
_, Zt 1 vec(UrUOEQ(t) L AR) — vec(UrUS, 0 (t) L Af]
S [vec(UpUOY Q) L Ar) + vec(Un UL, Q(t) L AR)] )
(i) UpX~tvec(Up) (A-4)

- (Zt e (Q(t)_lUOthaBR)+vec(ﬂ(t)—1U0tU}th]>
S [vec(Qt) " Uo U, Br) + vee((t) " UosU},Br) )

PRrOOF.
UYE U,
_, (KLM[(URM )—(UI®A’)]> o

K, [(Ur® A}) + (Ur ® AR))

x 2 ( Kpurl(Un © AR) = (U1 © A7) Kp,,r[(Ur ® A7) + (U1 © A7) )

(K;,l AUWRS \WUArK,, » K, TUARZ‘IUAIKPI,T)

K;,l TUAIE_lUARKpl,r Kpl TUA[E_IUAIKpl,r

Uaaay Uaaaz)
Uaa@ry Uaae)

where
Uar = (Up® Ar) — (U1 ® Ar),  Uar= (Up ® A) — (U; ® Ag),
Uaaqy = Km TUARE_IUARKm,r» Usaqz) = UhrE U arKp, r,
Usaq) = p1 PUarE” UARKm ry Unae) = Kp1 a2 UAIKpl,T
and
Kzln TUAIE_lUARKpl,r
=4x K, [Ur® ARS lUp @ AR — Up ® ALYUr ® Ag
—Ur@ AW @ A — Uy @ ASS U @ AflKy, -
= 4% YL [(ARQ(t) " AR ® UrUp) — (ARQ(t) " A © UrUY)
— (40 AR © UU) + (40(1) 141 © UU})],

P1T
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Ky, JUWpE WUarKy, K, U4 X UKy, » and K U\ =7 U a1 Kp,  are ca-

p1,T

lculated similarly. Hence, (A.1) is proved. (A.2), (A.3) and (A.4) can be proved
similarly. O

Proof of Theorem 8.1

Applying the vector operation to (3.3) we obtain

vec(Up) = 2(UrBr @ Ip)vec(AR) + 2(UgBr ® Ip)vec(A)
+2(U;B; ® Ip)vec(AR) + 2(UBr ® Ip)vec(Ag) + u
= 2((U§QBR ®Ip)+ (UIIQB] ® Ip))vec(AR)
+2((UrBr ® Ip) + (U;Br ® Ip))vec(Ar) +u

. vec(AR)
= Us x (vec(Af) ) tu

=Up x GY + u,
where
_[(Gr O _ [ vr
o (Ve )= ()

vec(AR) = Gryr, vec(Ar) = Gryr and u = vec(Ug).
For fixed values of Bg, By, and ¥, this becomes a restricted GLS problem; so
therefore,

vec(A) = Q[G'UsE ™ UpG| ' G'ULZvec(Uy).
Similarly, for fixed Ag, A;, and ¥, we have
vec(Up) = 2(Ug ® Ar)vec(Bg) + 2(Ugr ® Ar)vec(BY))
+2(U;B; ® Ip)vec(B) — 2(U; ® Ag)vec(BR) +u

= 2((Ur ® Agr) — (Ur ® Ar))vec(B])
+2((Ug ® Aq) + (U} ® Ar)vec(B))) +u

_ vec(BR)
= Uax (vec(BI)) tu
= Uy x (Ho+ h) + u,

where

_(Hr O _ [ ¢r [ hr
o= () o= (5) = ()
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vec(Bgr) = Hror + hr, vec(By) = Hré; + hy, and u = vec(Ug),
which is also restricted GLS problem; so therefore,

vec(B) = HIH'UAS WU4H)" H'U", Zvec(Uy) + h.

Proof of Theorem 3.2

Within each of subsamples, the estimators are consistent as shown by Jo-
hansen and Schaumburg (1999). The estimators from m subsamples can be
combined into the estimator A, B and Q(t) that are consistent for the population
parameter A, B and () as Theorem 8 in Hansen (2003).

Proof of Theorem 8.3

The maximum value of the log-likelihood function is given by

. mm s T [ .
log(Lma.X)(AR7 AIaBR>BIan=1,...,m) &8 _5 (Z Pj 1Og IQ]| ’
j=1

A ~

A _ T
where Q; = (T; = T;-1) ™ Xy 2g,_, 1 UaUg and pj = (T — Tj-1)/T.
From Theorem 10 of Hansen (2003), we can obtain

T m o ~ - -~
-5 (Zlogm’) x UgZ~tUg

j=1
and we can express Uy as

Ut = U+ 2(ArRBR — A;By — AgpBg — A1B1)Ur
+ 2(ArB} — A;Bl — AgB) + A;Bp)U;
= U4 +2(Ag — Ag) BRUR + 2AR(Bg — Br)'Ug
+2(Ag — AR)(Bg — Br)'Ug
+2(Ar — Af)BiUg + 2A1(B; — By)'Ug
+2(A; — A7) (Br — B)'Ug
+2(Ap — AR)BUg + 2Ar(B; — By)'U;
+2(Ag — AR)(Br — Br)'Ug
+2(A; — Ar)BRUg + 2A1(Br — Br)'Ur
+2(A; — A;)(Br — Bg)'Uy.
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Since the terms 2(1‘1}2 — AR)(Bg — BR)/UR, 2(/1[ — A (By — E})/UR, Q(AR —
AR)(Br—Bi)'Ur and 2(Ar—Ar)(Bgr—Bg)'Us are all Op(T~1/2)0,(T~1)0,(T) =
0p(1), we obtain
ﬁet = Ugq + 2[(AR — AR)BR + (AI — A[)BR]UR
+2[(AR — AR)BI + (AI — A])BR]U[
+2[AR(Br - Br) + Ar(B; — B))lUg
+2[Ar(B; — Br) + A1(Bgr — BRr)|Ur + 0,(1)

and after some algebraic operations we obtain

. vec(Ar — Ag) vec(Bg — Br)
Ur = A A U 1
T Ut ( vec(Ar — Ar) ) " ( vee(B; — By) | 4 ol

= Ug + Upvec(A — A) + vec(B — B)U4 + op(1).

Since

vec(A — A) = G[G'UE UG I G' UL UE

vee(B — B) = HH'UySUAH) ' H'U4 S g + 0,(T7Y),

we obtain
UpxY0g = 1/ (Ip — P4 — Pe)n+ op(1),

where n = 572Uz ~ N(0,Ir), P4 = SV2UBGIG' UL S UG G U R /2
and Pg = S~ Y2 U H[H'U\ S \UsH| " H'U, 5~1/2,
Then, as in Theorem 10 of Hansen (2003), we can obtain

~210g Linax,1/ Linax0 = 7Qn + 0p(1) > x(9)?

and the detailed proof is the same as those of Theorem 10 in Hansen (2003).
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