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SIZE DISTRIBUTION OF ONE CONNECTED
COMPONENT OF ELLIPTIC RANDOM FIELD

M. T. Aropat!

ABSTRACT

The elliptic random field is an extension to the Gaussian random field.
We proved a theorem which characterizes the elliptic random field. We
proposed a heuristic approach to derive an approximation to the distribution
of the size of one connected component of its excursion set above a high
threshold. We used this approximation to approximate the distribution of
the largest cluster size. We used simulation to compare the approximation
with the exact distribution.
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1. INTRODUCTION

Let X(t), t € C C RP, D > 2, be a real-valued random field. Adler (1981)
defines the excursion set of the random field X (t) above u in C as the set

A, =A, (X, C)={teC: X(t) > u}. (1.1

Let M(A(Y,C)) and x(A4(Y,C)) be the number of local maxima of X(t) in C
above u and the Euler characteristic of 4, (Y,C), respectively. Assuming that the
excursion set does not touch the boundary of C, Adler (2000), for large u, shows

that E{M(A.(Y,C))} = E{x(A.(Y,C))}. This gives the following accurate ap-
proximation

P{ileng(t) > u} ~ E{M(A,(Y,C))} = E{x(4u(Y,C))}. (1.2)
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FIGURE 1.1 Ezcursion set of a student random field with v = 5 above the threshold u = 3.5.

According to Adler (1981), if X (t) is a homogeneous and smooth Gaussian ran-
dom field, then with probability tends to one as u — oo, the excursion set is a
finite union of connected components (clusters) such that each connected compo-
nent contains a local maximum for X (t), see Figure 1.1. The Gaussian random
field is used in the literature as a model for images obtained by FMRI (Functional
Magnetic Resonance Imaging) technique about the living human brain. The hy-
pothesis to be tested is Hy: no activation in the brain region C. This hypothesis
can be tested using

(i) Value of X (t): If u(t) represents the mean of the image at t, then the
above hypothesis is equivalent to Hy : u(t) = 0 for all t € C. We reject Hp
if supyec X (t) is large. The p-value for this test statistic can be calculated
according to (1.2).

(ii) Components of A, (X,C): This method tests the hypothesis Hy: mean
of the maximum cluster size = pg. The null hypothesis is rejected if max-
imum cluster size is large. To find the p-value of this test we need the
distribution of the largest cluster size.

Nosko (1969) derived an approximation to the distribution of the size of one
connected component of the excursion set of a homogeneous smooth zero mean
and unit variance Gaussian random field above a high threshold. Friston et al.
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(1993) used Nosko’s approximation to find the p-value for the second method.
Cao (1999) extends Nosko’s results to x?, t and F random fields. In this paper,
we proved a theorem which characterizes the elliptic random field. We derived
the expected number of the Euler characteristic of its excursion set. Also we
proposed a heuristic approach to derive an approximation to the distribution of
the size of one connected component of its excursion set. We used simulation to
compare the approximation with the exact distribution.

2. Ervuiptic RaANDOM FIELD

From here to the end of this paper, we will assume that all random variables
and vectors used in this paper have densities. A random vector W is said to be
m-dimensional multivariate elliptic with parameters u and ¥ if its pdf is of the
form

fww)=rxh((w—pwTEHw~-p), weR™,

for some function h, x a normalizing constant, and X is positive definite. The
parameters u, X are called location and scale parameters, respectively. We will
use the notation W ~ E,(u, ¥) to denote a m-dimensional multivariate elliptic
distribution with parameters p and X. If W ~ Ep(u, X) and

Y11 2
WT = (Wi, Wa), uT = (u1, p2) and = ),
o1 X2

then E{W1|W2} = p1+ 21222_21(W2 — ,u,g).

DEFINITION 2.1. A random field Y (t) is said to be a elliptic random field if
every finite-dimensional distribution is multivariate elliptic.

The homogeneous elliptic random field can be characterized by the following
theorem.

THEOREM 2.1. Let Y (t), t € C C RP be a homogeneous elliptic random field
with zero mean and covariance function Ry (t). Then Y (t) admits the following
stochastic representation

Y (t) = RX(%),

where X (t) is a homogeneous Gaussian random field with zero mean, unit vari-
ance, covariance function Rx(t) = E{R*}Ry(t) and R is a positive random
variable with finite variance independent of X (t).
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ProOOF. Let t = t1,...,t, € C. Then, by definition, the random vector,
W = (Y (t1),...,Y (t,)) has a multivariate elliptic distribution. From the multi-
variate theory, a random vector W ~ E,(u, X) if and only if W 4 u+ RH, where
R is a positive scalar random variable independent of H ~ N,(0,%) (Muirhead,
1982). So the vector W admits the representation W < R(X(t1),...,X(tn)),
where (X (t1),..., X (tz)) ~ Np(0, £*), and =¥ is a nxn with elements Cov(Y (t;),
Y(t;)), 4,5 = 1,...,n. This implies that Y (t) L RX (t) and the covariance func-
tion of Y (t) is E{R?}Rx(t). This establishes the theorem. O

The class of the elliptic random fields can be considered as an extension to
the class of the Gaussian random fields. For example, if R 2 \/1//_5 where S is
a chi-square random variable with v degrees of freedom, then Y (t) is a student
random field, which has more variability than the Gaussian random field. As
v — 00, the student random field will be a Gaussian random field. This makes
the elliptic class to be more suitable for modelling than the Gaussian class. One
more advantage of the elliptic field is that it is easy to simulate and its covariance
function is proportional to the Gaussian one. Since the random variable R does
not depend on t,

P {sup Y(t) > u} = /00 P {supX(t) > f‘_} fr(r)dr. (2.1)
tec 0 tec r

In the literature, several good approximations are available for P{sup;c X (t) >

u/r}, but we can not plug them in (2.1) since they are valid for large levels. So we

will go to approximate the left hand side of (2.1) based on the Euler characteristic

and the number of the local maxima of Y (t).

3. ASSUMPTIONS AND REGULARITY CONDITIONS

We will assume that the random field Y (t) has to satisfy regularity conditions
given in Adler (1981). Therefore we will assume that X (t), t € S ¢ RP, has zero-
mean, unit variance, homogeneous, ergodic and twice differentiable in the mean-
square sense Gaussian random field. If X (t) and X(t) be the gradient and the
matrix of the second partial derivatives of X (t) respectively, then Y (t) = RX (t)
and Y (t) = RX(t). Let X;(t) = 0X(t)/8¢; and X,; = 82X (t)/0t:t; satisfy the
following assumptions:

H;gfxE{IXij(t) - X;5(0)]} < Clit)%,
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where C' > 0 and all t in some neighborhood of 0. It easy to show that if the
field X (t) satisfies the regularity conditions, then so the field Y (t) does. For
a Gaussian random field X (t), the conditional distribution of X = X(0) given
X = X(0) is Npxp(—XA, M(A)), where A = Var(X), X = X(0) and M(A) is
a matrix depending on A.

4. S1ZE OF ONE CONNECTED COMPONENT

Using Taylor approximation about 0, we can write the following approxima-
tion for Y (t)

Y(t) =Y (0) +tTY(0)t + —;—tTY(O)t.

Given that Y > u and Y is negative definite, we can solve the equation v =
Y(t) for t. So the size of the connected components that contains 0 will be
approximated by the D-dimensional volume of the ellipsoid surrounded by u =
Y (t). Therefore, the volume is

Ml

(2(Y —u)— YTY“lY)

S =uwp -
det(—Y)2

, (4.1)

where wp is the volume of the D-dimensional unit ball. For large values of u,
the second term in the numerator of equation (4.1) can be neglected. Since the
curvature matrix Y is random, we will replace it by its conditional mean given
that Y = u, i.e., Cov(Y;Y) = E{R?}A and Var{Y} = E{R?}. The conditional
mean of Y given Y = u is given by

E{Y|Y = u} = E{Y} + Cov(Y, Y)Cov(Y) }(u — E{Y})
= E{Y} —uE{R*}AE{R*}l(u — E{Y})
= —uA.
This reduces equation (4.1) to

D
2

S~ wp2? det(A)2 (Y — “) . (4.2)

u

To find the distribution of S, we need to find the distribution of Y — u given
that Y (t) has a local maximum of a height exceeding u at 0. Let Fy(y) denotes
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this distribution. Using the same argument as that of Adler (1981, p. 158) and
noting that E{M(A,(Y,C))} =~ E{x(A4.(Y,C))} we can write

E{X( y+u(Y’C))}
B A0} (43)

For a Gaussian X(t) with A = Var(X(0)), Adler (1981) gives the following
expression for E{x(A4,(X,C))} as

1-Fy(y) =

exp(—4 ) det(A)%

E{X(AU(X’ C))} = )‘(C) ( )(D+1)/2 HD—l(u)7 (44)
where
[n/2] Jgh 23
H,(z) =n! Z %W (4.5)

Using equation (4.4) and Theorem 5.2.1 of Adler (1981), we can relate the Euler
characteristic of the excursion set of X (t) and Euler characteristic of the excursion
set of Y'(t) as follows:

E{x(4u(Y,C))} = /0 " B{x(As(X,0)} fr(r)dr

= MC) det(A)2 )% /000 exp (-—;—:2) Hp_, ( ) fr(r)dr.

(27{') D;»l
For large u, this leads to
Jo® exp (— ) Hp .y (4E2) fr(r)dr
J5™ exp (=5 ) Hp-1(2)fa(r)dr

For D = 2 and R = /v/S, where S is a chi-square random variable with v
degrees of freedom, the field Y'(t) is called the student random field. In this case,
Hi(z) =z and

1 - Fy(y) ~

(4.6)

o5 p—v—1 _ v
fary = 22T e () o
L(%)22

As a function in u, the integral

/0 ” exp (—%) i (%) 5 (ryir
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is proportional to

0 2
u/ "2 exp <_u24;1/) Hl(g)dr = —UTE
0 T r (u2+1/) 0]

So the following holds

v+1

_uty u? 4+ v k3

1- R~ () (@)
- u2+1/ %l
~(@rres) “8)

for large values of u and y is small with respect to u. From the last equation
we note that 1 — Fy(y) is equivalent to exp(—uy) for large v, which is the same

result of Nosko (1969) reported in Alder (1981). It can be noted that 1 — Fy(y)
does not depend on D.

5. EXCURSION SET AND PoissoN CLUMPING

If Ap denotes the Lebesque measure on RZ, then for any fixed threshold u
and a homogeneous random field Y(t), t € C,

Ap{Au(Y;C)} = /C 14, (Y (t) — w)dt.

Taking the expectation on both sides

E{Ap(Au(Y,C))} = /C E{ly, o(Y(8))}dt

_ / P{Y(0) > u}dt
C
— Ap{CYP{U(t) 2 u). (5.1)

Aldous (1989) introduced the Poisson clumping heuristic (PCH), which means
throwing random sets (clumps) at random according to a Poisson point process,
i.e., the centers of the sets are generated by a Poisson random variable. Cao
(1999) used the PCH to model the excursion set A,(Y,C), where each cluster
is considered as a clump and the local maximum is considered to be the center
of the cluster. Let N be the number of connected components of A,(Y,C) and
S1,...,Sn be the sizes of these clusters. So

E{Ap(Au(Y,C))} = E[NE{S:1}]
= B{N}E{S:}. (5.2)
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By (5.1) and (5.2),
E{Ap(Au(Y,C))} = Ap(C)P{Y (0) > u}.
If we approximate E{N} by E{x(A,(Y,C))}, then

Ap(C)P{Y (0) > u}
E{x(A.(Y,C))}

E{S1} ~ (5.3)

6. DISTRIBUTION OF MAXIMUM CLUSTER SIZE

Using the idea of PCH, Cao (1999) writes the distribution of Spax = max; S;
in terms of E{N} and P{S; > s} as follows:

where P{S; > s} can be obtained using (4.2) and (4.7) while E{N} will be
approximated by E{x(A4,(Y,C))}.

7. SIMULATION

We simulated two large samples each of size m =5,000, one from the approx-
imate distribution of the cluster size and the other one from the exact distribu-
tion. The exact one is simulated using the equation Y (t) = RX (t) in the region
C = [1,128] x [1,128], where R = 1/v/S, S is a chi-square random variable with
v degrees of freedom independent of X (t). Then we threshold the field Y (t) by
a fixed level u. We used the MatLab function BWLABEL to find the sizes of the
clusters in the excursion set {t € [1,128] x [1,128] : Y(t) > u}. In our simula-
tion, we considered v = 10 and the values u = 2.5, 3.0 and 3.5. The cumulative
distribution function (cdf) for each sample is plotted in Figure 7.1. We note that
the two cdf’s are very closed.

In Figure 7.2, we compare the cluster size distributions for the Gaussian
random field and for the elliptic random field for v = 2.5, v = 5, 10 and 25. We
see that there is a difference between the two distributions for small values of v,
while this difference disappears for large values of v. This is expected result since
the elliptic random field (T'(t) = X (t)/v/S) is equivalent to the Gaussian one
as v — 00. So we have to be careful when applying the Gaussian approximation
to the cluster size for real data.
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FIGURE 7.1 The ezact distribution function (dotted) of the cluster size and the approzimate

size

distribution function (smooth) of the cluster size for u = 2.5, 3.0 and u = 3.5.
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FIGURE 7.2 The distribution functions for two large samples obtained from the distributions of
the cluster size. The Gaussian random field (dotted) and the elliptic random field (smooth) for
u=25andv =25, 10 and 25.
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8. CONCLUSION

In this paper, we derived an approximation to the distribution of the size of
one connected component of the excursion set of the elliptic random field. For
the case when D = 2 and R = m, where S is a chi-square random variable
with v degrees of freedom, our result match the Nosko’s one when v — oo,
i.e., when the field is Gaussian. For small values of v the simulation shows
that the approximation works very well. We also note that for this case E{S;},
obtained based on PCH, and E{S’ } obtained based on our approximation are the
same. This means that the approximate distribution derived here need not to be
corrected to the mean as in Friston et al. (1993).
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