DOI QR코드

DOI QR Code

Identification of Brassinosteroid-Related Protein, BAK1 from Nutrition Deficient Tomato Cultivated by Soilless Cultivation System

수경재배 영양결핍토마토에서 브레시노스테로이드관련 신호전달 단백질 BAK1의 동정

  • Shin, Pyung-Gyun (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Chang, An-Cheol (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Hong, Sung-Chang (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Ki-Sang (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA)
  • 신평균 (농업과학기술원 식물영양과) ;
  • 장안철 (농업과학기술원 식물영양과) ;
  • 홍성창 (농업과학기술원 식물영양과) ;
  • 이기상 (농업과학기술원 식물영양과)
  • Published : 2007.12.30

Abstract

Brassinolide insensitive associated receptor kinase 1(BAK1) is a critical component that play an important roles in signaling of brassinosteroid biosynthesis. Brassinosteroid-deficient and -insensitive mutants showed the characteristic of dwarf symptom. The nutrient deficient tomato showing stunt phenomenon was selected from soiless cultivation system using modified Sonneveld hydroponic solution. Twenty eight protein spots showing different expression levels compared to the control were isolated from extracts of stunted tomato leaves by 2D PAGE analyses. Significantly down-regulated 6 protein spots out of 28 protein spots were analyzed and sequenced by MALDI-TOF mass spectrometry. The protein spot having pI=4.5 and MW=24 kDa was identified as a signal protein, BAK1, which is directly related to brassinosteroid biosynthesis. In addition, five other protein spots were identified as BCK1, cystein proteinase, sulfutase, peroxidase and zinc finger factor respectively, and they were also signal proteins related to brassinosteroid biosynthesis. Furthermore, amplification of 500bp of BAK1 mRNA by RT-PCR using a primer set of peptide matched regions was inhibited conpared to that of the wild type. The results sugested that the BAK1 might be regulated at the transcription level in response to nutrition applications.

BAK1(Brassinolide insensitive associated receptor kinase 1)는 브라시노스테로이드 생합성 대사관련 신호전달 매체이다. BR 생합성 및 신호전달 돌연변이체는 매우 특징적인 난쟁이 표현형을 보인다. 과채류전용 양액배지인 Sonneveld 양액을 이용하여 양분결핍에 의해 왜성을 나타내는 토마토를 선발하였다. 선발된 토마토에 대해 이차원 전기영동법으로 단백질체를 분석한 결과, 발현차를 나타내는 28개의 단백질 spot이 분리되었다. 분리된 단백질 spot중 현저하게 발현이 억제된 단백질 spot 6개를 선발하여 단백질 서열을 결정하였다. 실험 결과, pI 4.5, 분자량 24 kDa를 나타내는 단백질은 브라시노스테로이드 생합성에 관여하며 왜성 표현형을 나타내는 신호전달 단백질, BAK1으로 동정되었다. BCK1, cystein proteinase, sulfutase, peroxidase, zinc finger factor로 동정 된 나머지 단백질들은 브레시노스테로이드 생합성관련 신호전달기작에 관여하는 단백질로 추정되었다. BAK1을 검정하기 위해 단백질 서열이 결정된 부위로부터 프라이머를 디자인하여 RT-PCR를 수행한 결과, 증폭된 500 bp의 산물이 정상과 발현차를 보여주었는데 이 결과는 양분조절에 의해서도 BAK1의 발현이 조절될 수 있음을 시사한다.

Keywords

References

  1. Belkhadir, Y. and J. Chory. 2006. Brassinosteroid signaling A paradigm for steroid hormone signaling from the cell surface. Science 314, 1410-1411 https://doi.org/10.1126/science.1134040
  2. Bishop, G. J. 2003. Brassinosteroid mutants of crops. J. Plant Growth Regul. 22, 325-335 https://doi.org/10.1007/s00344-003-0064-1
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-54 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Clouse, S. D. 2002. Brassinosteroid signal transduction: Clarifying the pathway from ligand perception to gene expression. Molecular Cell 10, 973-982 https://doi.org/10.1016/S1097-2765(02)00744-X
  5. Friedrichsen, D. M., C. A. P. Joazeiro, J. M. Li, T. Hunter and J. Chory. 2000. Brassinosteroid- insensitive 1 is a ubiquitously expressed leucine-rich repeat receptor serine/ threonine kinase. Plant Physiol. 123, 1247-1255 https://doi.org/10.1104/pp.123.4.1247
  6. Grove, M. D., G. F. Spencer, W. K. Rohwedder, N. Mandava, J. F. Worley, J. D. Warthen, G. L. Steffens, J. L. Flippen-Anserson and Jr J. C. Cook. 1979. Brassinolide, a plant growth-promoting steroid isolated Brassica napus pollen. Nature 281, 216-217 https://doi.org/10.1038/281216a0
  7. Hecht, V., J. P. Vielle-Calzada, M. V. Hartog, E. D. L. Schmidt, K. Boutilier, U. Grossniklaus and S. C. de Vries. 2001. The Arabidopsis SOMATIC EMBRYOGENESIS KINASE 1 is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127, 803-816 https://doi.org/10.1104/pp.010324
  8. Holliday, K. 2004. Plant hormones: The interplay of brassinosteroids and auxin. Current Biology 14, R1008-R1010 https://doi.org/10.1016/j.cub.2004.11.025
  9. http://129.85.19.192/profound_bin/Web ProFound.exe
  10. Kagale, S., U. D. Divi, J. E. Krochko, W. A. Keller and P. Krishna. 2007. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225, 353-364
  11. Karlova, R. S. and S. C. de Vries. 2006. Advances in understanding brassinosteroid signaling. Sci. STKE 2006 (354), 36
  12. Krishina, P. 2003. Brassinosteroid-mediated stress responses. J. Plant growth Regul. 22, 289-297 https://doi.org/10.1007/s00344-003-0058-z
  13. Lee, M. O., K. H. Song, H. K. Lee, J. Y. Jung, V. N. Choe and S. Choe. 2002. Metabolic engineering of brassinosteroid biostnthetic pathways. Korean J. Plant Biotech. 29, 139-144 https://doi.org/10.5010/JPB.2002.29.2.139
  14. Li, J., K. A. Lease, F. E. Tax and J. C. Walker. 2001. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98, 5916-5921a
  15. Li, J., P. Nagpal, V. Vitart, T. C. McMorris, J. Chory. 1996. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398-401 https://doi.org/10.1126/science.272.5260.398
  16. Marsolais, F., J. Boyd, Y. Paredes, A-M. Schinas, M. Garcia, S. Elzein and L. Varin. Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabisopsis, AtST4a(At2g14920) and AtST1(At2g03760). Planta 225, 1233-1244 https://doi.org/10.1007/s00425-006-0413-y
  17. Mazorra, L. M., M. Nunez, M. Hechavarria, F. Coll and M. J. Sanchez-Blanco. 2002. Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperature. Biologia Plantarum 45, 593-596 https://doi.org/10.1023/A:1022390917656
  18. Molnar, G., S. Bancos, F. Nagy and M. Szekeres. 2002. Characterization of BRH1, a brassinosteroid-responsive Ring-H2 gene from Arabidopsis thaliana. Planta 215, 127-133 https://doi.org/10.1007/s00425-001-0723-z
  19. National Institute of Agricultural Science and Technology. 2000. Analysis method of soil and plant. pp. 202. National Institute of Agricultural Science and Technology, Suwon, Korea
  20. Oakley, B. R., D. R. Kirsch and N. R. Morris. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105, 361-363 https://doi.org/10.1016/0003-2697(80)90470-4
  21. Sakamoto, T. and M. Matsuoka. 2006. Characterization of constitutive photomorphogenesis and dwarfism homologs in rice(Oryza sativa L.). J. Plant Growth Regul. 25, 245-251 https://doi.org/10.1007/s00344-006-0041-6
  22. Sasse, J. M. 2003. Physiological action of brassinosteroids : An update. J. Plant Growth Regul. 22, 276-288 https://doi.org/10.1007/s00344-003-0062-3
  23. Szekeres, M., K. Nemeth, Z. Koncz-Kalman, J. Mathur, A. Kauschmann, T. Altmann, G. P. Redei, F. Nagy, J. Schell and C. Koncz. 1996. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171-182 https://doi.org/10.1016/S0092-8674(00)81094-6
  24. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  25. Tanaka, K., Y. Nakamura, T. Asami, S. Yoshida, T. Matsuo and S. Okamoto. 2003. Physiological roles of brassinosteroids in early growth of Arabidopsis : Brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-growth hypocotyl elongation. J. Plant Growth Regul. 22, 259-271 https://doi.org/10.1007/s00344-003-0119-3
  26. Vert, G. and J. Chory. 2006. Downstream nuclear events in brassinosteroid signaling. Nature 441, 96-100 https://doi.org/10.1038/nature04681
  27. Vert, G., J. L. Nemhauser, N. Geldner, F. Hong and J. Chory. 2005. Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol. 21, 177-201 https://doi.org/10.1146/annurev.cellbio.21.090704.151241
  28. Wang, X. and J. Chory. 2006. Brassinosteroids regulate dissociation of BAK1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118-1122 https://doi.org/10.1126/science.1127593
  29. Wang, X., X. Li, J. Meisenhelder, T. Hunter, S. Yoshida, T. Asami and J. Chory. 2005. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Cell 8, 855-865
  30. Whippo, C. W. and R. P. Hangarter. 2005. A brassinosteroid- hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism. Plant Physiology 139, 448-457 https://doi.org/10.1104/pp.105.064444