DOI QR코드

DOI QR Code

지구성 운동이 본태성 고혈압 쥐 심장근의 eNOS, ET-1 mRNA와 골격근 eNOS 단백질 발현에 미치는 영향

The Effects of Exercise Training on Cardiac eNOS, ET-1 mRNA and Skeletal Muscle eNOS Protein Level in SHR

  • 송은영 (한국체육대학교 운동생화학실) ;
  • 조인호 (한국체육대학교 운동생화학실) ;
  • 조준용 (한국체육대학교 운동생화학실)
  • Published : 2007.12.30

Abstract

12주간의 저강도 트레드밀 운동은 본태성 고혈압 쥐의 안정시 심박수와 혈압, LPOA와 호모시스테인 수준의 개선과 함께 심장근의 eNOS mRNA 및 골격근의 sNOS 단백질 발현량을 증가시킨 반면 심근의 ET-1 mRNA 수준을 감소시키는 것으로 나타났다. 이러한 결과들은 결국 운동이 혈압조절 뿐만 아니라 고혈압에 의한 심근비대현상 관련 유전자들의 기능개선을 가져와 고혈압을 개선시키는 작용을 한다는 것을 확인 할 수 있었다.

In the present study, all of the treadmill exercise-trained SHR expressed clear adaptive changes such as reduced resting heart rate and blood pressures, LPOA, homocysteine Therefore, treadmill exercise was sufficient to induce physiological adaptation in the SHR. Endurance training is known to induce physiological cardiac hypertrophy, while hypertension induces patho logical cardiac hypertrophy that increases cardiomyocyte apoptosis. The pathological adaptation to pressure overload has also been associated with a further increase in the expression of several marker genes including cardiomyocyte ET-1 in the SHR, but not in the exercise-trained SHR. Additionally, there is an increase in the endothelial nitricoxide synthases (eNOS) protein expression of soleus, gastrocnemius, and extensor digitorum longus muscle in the exercise-trained SHR but not in the SHR in the present study. Thus, compared to pathological adaptation to pressure overload, physiological adaptation to exercise training is associated with distinct alterations in cardiac and molecular phenotypes. based on these results, exercise training improves hypertension by cardiovascular regulating genes and hemodynamic parameters.

Keywords

References

  1. American Physiological Society Operational Guide Revision. 2002. Guiding Principles for the Care and Use of Animal in the Recommendations for the Declaration of Helsinki 1964. American Physiology Society
  2. Arakawa, K. 1997. Humoral factors as mediators of antihypertensive effect of exercise training: aan updaet. Blood Press Monit. 2(5), 237-239
  3. Balon, T. W. and J. L. Nadler. 1997. Evidence that nitric oxide increases glucose transport in skeletal muscle. Journal of Applied Physiology 82, 359-363 https://doi.org/10.1152/jappl.1997.82.1.359
  4. Bradford, M. M. 1976. Rapid and sensitive method for quantitation of microgram guantities of protein utilizing the principle of pretein-dye binding. Anal. Biochem. 7(72), 248-254
  5. Dorn, G. W and J, H. Brown, 1999. Gq signaling in cardiac adaptation and maladaptation. Trends Casdiovasc. Med. 9, 26-34 https://doi.org/10.1016/S1050-1738(99)00004-3
  6. Emori, T., Y. Hirata, K. Ohta, M. Shichiri and P. Marumo. 1989. Secretory mechanism of immunoreactive endothelin in cultured bovine endothelial cells. Biochem. Biophys. Res. Commun. 160, 93-100 https://doi.org/10.1016/0006-291X(89)91625-2
  7. Ishikawa, T., M. Yanagisawa, S. Kimura, K. Goto and T. Masaki. 1988. Positive inotropic action of novel vasoconstrictor peptide endothelin on guinea pig atria. Am. J. Physiol. 255 (Heart Circ. Physiol. 24), H970-H973
  8. Ishikawa, T., M. Yanagisawa, S. Kimura, K. Goto and T. Masaki. 1988. Positive chronotropic effects of endothelin, a novel endothelium-derived vasoconstrictor peptide. Pflugers Arch. 413, 108-110 https://doi.org/10.1007/BF00581239
  9. Kobzik, L., M. B. Reid, D. S Bredt and J. S. Stamler. 1994. Nitric oxide in skeletal muscle. Nature 372, 546-548 https://doi.org/10.1038/372546a0
  10. Kobzik, L., B. Stringer, J. L. Balligand, M. B. Reid and J. S. Stamler. 1995. Endothelial type nitric oxide synthase in skeletal muscle fibers: mitochondrial relationships. Biochemical and Biophysical Research Communication 211, 375-381 https://doi.org/10.1006/bbrc.1995.1824
  11. Kojima, M., I. Shiojima, T. Yamazaki, I. Komuro, Y. Zou, Y. Wang, T. Mizuno, K. Ueki, K. Tobe, T. Kadowaki, R. Nagai and Y. Yazaki. 1994. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertriphy in vivo and inhibits the intracellular signaling pathway of stretch mediated cardiomyocyte hypertrophy in vitro. Circulation 89, 2204-2211 https://doi.org/10.1161/01.CIR.89.5.2204
  12. Koller, A., A. Huang, D. Sun and G. Kaley. 1995. Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Role of endothelial nitric oxide and prostaglandins. Circulation Research 76, 544-550 https://doi.org/10.1161/01.RES.76.4.544
  13. Maeda, S., T. Miyauchi, K. Goto and M. Matsuda. 1994. Alteration of plasma endothelin-1 by exercise at intensities lower and higher than ventilatory threshold. J. Appl. Physiol. 77, 1399-1402 https://doi.org/10.1152/jappl.1994.77.3.1399
  14. Motoyuki, I., T. Miyauchi, S. Maeda, S. Sakai, T. Kobayashi, N. Fujii, H. Miyazaki, M. Matsuda and I. Yamaguchi. 2001. Physiological and pathological cardiac hypertrophy induce different molecular phenotype in the rat. Am J Physiol Regulatory Integratiev Comp. Physiol 281, 2029-2036 https://doi.org/10.1152/ajpregu.2001.281.6.R2029
  15. Reddy, D. S. 1997. Cellular and molecular biology of cardiac hypertrophy: Curr Sci, 72, 13-30
  16. Richey, P. A. and S. P. Brown. 1998. Pathological versus physiological left ventricular hypertrophy; a review. Journal of Sport Science 16(2), 129-141 https://doi.org/10.1080/026404198366849
  17. Sakai, S., T. Miyauchi, M. Kobayashi, I. Yamaguchi, K. Goto and Y. Sugishita. 1996. Inhibition of myocardial endothelin pathway improve long-term survival in heart failure. Nature 384, 353-355 https://doi.org/10.1038/384353a0
  18. Sakai, S., T. Miyauchi, T. Sakurai, Y. Kasuya, M. Ihara, I. Yamaguchi, K. Goto and Y. Sugishita. 1996. Endogenous endothelin-1 participates in the maintenance of cardiac function in rats with congestive heart failure. Marked increase in endothelin-1 production in the failing heart. Circulation 93, 1214-1222 https://doi.org/10.1161/01.CIR.93.6.1214
  19. Shubeita, H. E., P. M. McDough, A. N. Harris, K. U. Knowlton, C. C. Glembotski, J. H. Brown and K. R. Chien. 1990. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac expression in ventricular myocytes: a paracrine mechanism for myocardial cell hypertrophy. J. Biol. Chem. 265, 20555-20562
  20. Sumpio, B. E. and M. D. Widmann. 1990. Enhanced production of endothelium-derived contracting factor by endothelial cells subjected to pulsatile stretch. Surgery 108, 277-281
  21. Suzuki, T., T. Tumazaki and Y. Mitsui. 1993. Endothelin-1 is produced and secreted by neonatal rat cardiac myocytes in vitro. Biochem. Biophys. Res. Commun. 193, 823-830
  22. Tatchum-Talom, R., R. Schulz, J. R. McNeill and F. H. Khadour. 2000. Upregulation of neuronal nitric oxide synthase in skeletal muscle by swim training. American Journal of Physiology on Heart and Circulation Physiology 279, H1757-H1766
  23. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, and T. Masaki. 1988. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411-415 https://doi.org/10.1038/332411a0
  24. Yoshizumi, M., H. Kurihara, T. Sugiyama, F. Takaku, M. Yanagisawa, T. Masaki and Y. Yazaki. 1989. Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem. Biophys. Res. Commun. 161, 859-864 https://doi.org/10.1016/0006-291X(89)92679-X