DOI QR코드

DOI QR Code

Proteomic Analyses of Chinese Cabbage(Brassica campestris L. pekinensis) Affected by High Temperature Stresses in Highland Cultivation During Summer in Korea

Proteomics를 이용한 고랭지 배추의 고온장해 해석

  • Shin, Pyung-Gyun (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Hong, Sung-Chang (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Chang, An-Cheol (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Sang-Hyo (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Ki-Sang (Plant Nutrition Division, National Institute of Agricultural Science and Technology, RDA)
  • 신평균 (농촌진흥청 농업과학기술원 식물영양과) ;
  • 홍성창 (농촌진흥청 농업과학기술원 식물영양과) ;
  • 장안철 (농촌진흥청 농업과학기술원 식물영양과) ;
  • 김상효 (농촌진흥청 농업과학기술원 식물영양과) ;
  • 이기상 (농촌진흥청 농업과학기술원 식물영양과)
  • Published : 2007.12.30

Abstract

High temperature stresses have caused growth inhibition and delayed heading in highland cultivation Chinese cabbage during summer in Korea. We have studied high temperature stress responses in the terms of changes of inorganic components and proteins by proteomic analyses. Insufficiencies of nitrogen and phosphorus have affected growth rate and calcium deficiency has caused blunted heading. Proteins extracted from Brassica seedling grown at the altitude of 600m and 900m in the Mount Jilun were extracted and analysed by 2-dimentional polyacrylamide gel electrophoresis. Profiles of protein expression was then analyzed by 2-dimentional gel analyses. Protein spots showing different expression level were picked using the spot handling workstation and subjected to MALDI-TOF MS. Total 48 protein spots were analyzed by MALDI-TOF MS and 30 proteins spots out of 48 were identified by peptide mass fingerprinting analyses. Fourteen proteins were up-regulated in extracts from the altitude of 900m and they were identified as oxygen-evolving proteins, rubisco activase and ATPase etc. Sixteen proteins were up-regulated in extracts from the altitude of 600m and they were identified as glutathione S-transferase(1, 28kD cold induced- and 24 kD auxin-binding proteins) and salt-stress induced protein etc. These stress-induced proteins were related to the mediated protective mechanism against oxidative damage during various stresses. The results indicated that physiological phenomenon in response to high temperature stresses might be resulted by complex and multiple array of responses with drought, heat, oxidative, salt, and cold by high temperature.

무더운 날씨가 지속됨으로서 고랭지배추의 생장 및 결구가 지연되고 있는 강원도 정선군 질운산(새빗재)의 600 m와 900 m의 배추를 사용하여 무기성분 및 단백질 발현패턴을 분석하였다. 식물체 무기성분에서는 생장에 관련된 질소 및 인산의 부족현상과 결구에 관련된 칼슘이 부족하였다. 단백체 분석은 2차원 전기영동에 의해 전체 126개의 단백질이 분리되었고 그중 48개의 단백질이 고도에 따라 변화하는 양상을 보여주었다. 이 중에서 30개의 단백질 서열이 결정되었는데, 해발 900 m에서 단백질 발현이 증가한 14개 중에서 oxygen- evolving proteins, rubisco activase and ATPase 등이, 해발 600 m에서는 glutathione S-transferase (1, 28 kD cold induced- and 24kD auxin-binding proteins) and salt-stress induced protein 등 16개의 단백질 발현이 증가하였다. 이러한 단백질은 식물체 손상에 대한 보호기작을 가진 스트레스관련 단백질로 가뭄, 온도상승, 밤낮의 온도차 등의 반복으로 복합적이며 동시 다발적으로 나타나는 고온장해 현상으로 사료된다.

Keywords

References

  1. Angadi, S. V., H. W. Cutforth, P. R. Miller, B. G. McConkey, M. H. Entz, S. A. Brandt, and K. M. Volkmar. 2000. Response of three Brassica species to high temperature stress during reproductive growth. Canadian J. Plant Science 80, 693-701 https://doi.org/10.4141/P99-152
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Edwards, R., D. P. Dixon, and V. Walbot. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5, 193-198 https://doi.org/10.1016/S1360-1385(00)01601-0
  4. Erickson, A. N., and A. H. Markhat. 2002. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 25, 155-163
  5. Hwang, S. W., J. Y. Lee, S. C. Hong, Y. H. Park, S. G. Yun, and M. H. Park. 2003. High temperature stress of summer Chinese cabbage in alpine region. Korean J. Soil Fert. 36, 417-422
  6. http://129.85.19.192/profound_bin/WebProFound.exe
  7. IPCC Working Group I. 2001. Climate change : the scientific basis. Projections of future climate change, Geneva, Switzerland. http://www.grida.no/climate /ipcc_tar/wg1/ 339.htm
  8. Jiao, S., E. Hilaire, and A. J. Guikema. 2004. Identification and differential accumulation of two isoforms of the $CF_{1}$- $\beta$ subunit under high light stress in Brassica rapa. Plant Physiol. Biochem. 42, 883-890 https://doi.org/10.1016/j.plaphy.2004.11.001
  9. Mang, H. G., E. O. Kang, J. H. Shim, S. Kim, K. Y. Park, Y. S. Kim, Y. Y. Bahk, and W. T. Kim. 2004. A proteomic analysis identifies glutathione S-transferase isoforms whose abundance is differentially regulated by ethylene during the formation of early root epidermis in Arabidopsis seedlings. Biochem. Biophys. Acta. 1676, 231-239 https://doi.org/10.1016/j.bbaexp.2003.12.005
  10. Mckersie, B. D., and Y. Y. Leshem. 1994. Stress and stress coping in cultivated plants. Kluwer Acadenic Publishers, Dordrecht, Netherland
  11. Morrison, M. J. 1993. Heat stress during reproduction in summer rape. Canadian J. Botany 71, 303-308 https://doi.org/10.1139/b93-031
  12. National Institute of Agricultural Science and Technology(NIAST). 2000. Analysis method of soil and plant. pp. 202. National Institute of Agricultural Science and Technology, Suwon, Korea
  13. Nuttal, W. F., A. P. Moulin, and L. J. Townley-Smith. 1992. Yield response of canola to nitrogen, phosphorus, precipitation, and temperature. Agronomy J. 84, 765-768 https://doi.org/10.2134/agronj1992.00021962008400050001x
  14. Oakley, B. R., D. R. Kirsch and N. R. Morris. 1980. A simplified ultrasensitive silver stain for setecting proteins in polyacrylamide gels. Anal. Biochem. 105, 361-363 https://doi.org/10.1016/0003-2697(80)90470-4
  15. Pareek, A., S. L. Singla, and A. Grover. 1995. Immunological evidence for accumulation of two high-molecular- weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera. Plant Mol. Biol. 29, 293-301 https://doi.org/10.1007/BF00043653
  16. Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins from silver- stained polyacrylamide gels. Anal. Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  17. Shevchenko, A., O. N. Jensen, A. V. Podtelejnikov, F. Sagliocco, M. Wilm, O. Vorm, P. Mortensen, A. Shevchenko, H. Boucherie and M. Mann. 1996. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. 93, 14440-14445
  18. Young, L. W., R. W. Wilen, and P. C. Bonham-Smith. 2004. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Botany 55, 485-495 https://doi.org/10.1093/jxb/erh038