DOI QR코드

DOI QR Code

Development of Preservation Prediction Chart for Long Term Storage of Fermented Cucumber

발효오이의 산패예견표의 개발

  • Kim, Jae-Ho (Department of Biology, Kyungsung University) ;
  • Breidt, Fred (USDA ARS, Department of Food Science, North Carolina State University)
  • Published : 2007.12.30

Abstract

Off-flavors and odors in fermented cucumbers result from the growth of undesirable microorganisms during the secondary fermentation. Under laboratory conditions using a sterile fermented cucumber slurry medium, the spoilage fermentations were reproduced. Using this system the salt and pH conditions that allow the spoilage to occur were determined by varying the NaCl concentration and pH of the slurry medium. At pH 3, no spoilage was observed, regardless of the salt concentration, while at pH 3.5, pH 4, and pH 4.5, spoilage occurred in the 0 and 2% NaCl samples. For pH 5.0 samples, spoilage products were seen for all NaCl treatments. Based on these results the Preservation Prediction Chart was developed. The Chart may be used for selection of proper pH value and salt concentration for long term storage of fermented cucumber.

발효된 오이의 산패는 원하지 않는 미생물의 2차적 생장에 의한 결과이며 장기보관을 원하는 발효오이 식품은 일반적으로 고농도의 염을 사용한다. 염의 농도를 최소한으로 하면서 산패를 방지할 수 있는 pH의 범위를 모색하기 위하여 다양한 조합의 pH와 NaCl 농도를 갖는 발효오이즙(FCS) 배양액에 3가지 종류의 산패액을 각각 접종하여 발효오이의 산패여부를 조사하였다. pH3에서는 NaCl의 첨가가 없더라도 산패는 일어나지 않는데 비하여 pH 5.0에서는 4%의 NaCl에서도 모두 산패가 진행되었다. pH 3.5, pH 4, pH 4.5 에서는 0%와 2% NaCl의 범위 내에서 다양한 결과를 보였다. 이 결과를 바탕으로 발효오이의 산패를 예견할 수 있는 조견표를 작성하였다. 조견표의 사용은 발효오이의 장기보관을 위한 적절한 산도와 염의 농도의 선택을 가능하게 할 것이다.

Keywords

References

  1. Breidt, J. F., R. F. McFeeters and I. Diaz-Muniz. 2007. Fermented vegetables, pp. 783-793, In Doyle, M. P. and L. R. Beuchat (3rd ed.), Food Microbiology: Fundamentals and Frontiers, ASM Press, Washnington, D. C
  2. Fleming, H. P. 1982. Fermented vegetables. In Rose, A. H, Economic microbiology, Vol. 7, Academic Press, New York
  3. Fleming, H. P., R. F. McFeeters, M, A, Daeschel, E. G. Humphries and R. L. Thompson. 1988. Fermentation of cucumbers in anaerobic tanks. J. Food Sci. 53, 127-133 https://doi.org/10.1111/j.1365-2621.1988.tb10192.x
  4. Fleming, H. P., M. A. Daeschel, R. F. McFeeters and M. D. Pierson. 1989. Butyric Acid Spoilage of Fermented Cucumbers. J. Food Sci. 54, 636-639 https://doi.org/10.1111/j.1365-2621.1989.tb04670.x
  5. Fleming, H. P., L. C. McDonald, R. F. McFeeters and E. G. Humphries. 1995. Fermentation of Cucumbers Without Sodium Chloride. J. Food sci. 60, 312-315 https://doi.org/10.1111/j.1365-2621.1995.tb05662.x
  6. Fleming, H. P., K. H. Kyung and F. Breidt. 1995. Vegetable fermentations. pp. 629-661, In H. J. Rehm and G. Reed (second ed.) Biotechnology, Vol. 9, VCH Publishers, Inc., New York
  7. Fleming, H. P., R. L. Thompson and R. F. McFeeters. 1996. Assuring microbial and textural stability of fermented cucumbers by pH adjustment and sodium benzoate addition. J. Food sci. 61, 832-836 https://doi.org/10.1111/j.1365-2621.1996.tb12213.x
  8. Fleming, H. P., E. G. Humphries, O. O. Fasina, R. F. McFeeters, R. L. Thompson and F. Breidt. 2002. Bag-inthe- Box Technology: Pilot system for process-ready, fermented cucumbers. Pickle Pak Sci. VIII, 1-8
  9. Kim, J. H. and H. Y. Jang. 2004. 16S rDNA-PCR and RFLP analysis for rapid identification of spoilage bacteria from low salt cucumber brine. Korean J. Biotechnol. Bioeng. 19, 72-77
  10. McDonald, L. C., H. P. Fleming and H. M. Hassan. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56, 2120-2124
  11. McDonald, L. C., D. H. Shieh, H. P. Fleming, R. F. McFeeters and R. L. Thompson. 1993. Evaluation of malolactic- deficient strains of lactobacillus plantarum for use in cucumber fermentations. Food Microbiol. 10, 489-499 https://doi.org/10.1006/fmic.1993.1054

Cited by

  1. Influence of Sodium Chloride, pH, and Lactic Acid Bacteria on Anaerobic Lactic Acid Utilization during Fermented Cucumber Spoilage vol.77, pp.7, 2012, https://doi.org/10.1111/j.1750-3841.2012.02780.x
  2. Characterization of Cucumber Fermentation Spoilage Bacteria by Enrichment Culture and 16S rDNA Cloning vol.78, pp.3, 2013, https://doi.org/10.1111/1750-3841.12057
  3. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers vol.215, 2015, https://doi.org/10.1016/j.ijfoodmicro.2015.08.004
  4. Implications of Salt and Sodium Reduction on Microbial Food Safety vol.50, pp.3, 2010, https://doi.org/10.1080/10408391003626207
  5. Development of a Model System for the Study of Spoilage Associated Secondary Cucumber Fermentation during Long-Term Storage vol.77, pp.10, 2012, https://doi.org/10.1111/j.1750-3841.2012.02845.x
  6. Detection of Volatile Spoilage Metabolites in Fermented Cucumbers Using Nontargeted, Comprehensive 2-Dimensional Gas Chromatography-Time-of-Flight Mass Spectrometry (GC×GC-TOFMS) vol.76, pp.1, 2011, https://doi.org/10.1111/j.1750-3841.2010.01918.x
  7. Metabolism of lactic acid in fermented cucumbers by Lactobacillus buchneri and related species, potential spoilage organisms in reduced salt fermentations vol.35, pp.2, 2013, https://doi.org/10.1016/j.fm.2013.03.004
  8. Pectinatus sottacetonis sp. nov., isolated from a commercial pickle spoilage tank vol.63, pp.Pt 10, 2013, https://doi.org/10.1099/ijs.0.047886-0
  9. Characteristics of Spoilage-Associated Secondary Cucumber Fermentation vol.78, pp.4, 2011, https://doi.org/10.1128/AEM.06605-11
  10. Pellicle formation, microbial succession and lactic acid utilisation during the aerobic deteriorating process of Sichuan pickle vol.53, pp.3, 2017, https://doi.org/10.1111/ijfs.13652