Effects of Interactions between the Concrete Deck and Steel Girders on the Dynamic Behavior of Simply Supported Skew Bridges

주형과 상판과의 상호작용이 단순 사교의 동적거동에 미치는 영향

  • 문성권 (대구한의대학교 건축토목설계학부)
  • Published : 2007.10.30

Abstract

Although composite construction has more mechanical advantages compared to noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the validity of the application of noncomposite construction to skew bridges was checked. Also, the effects of interactions between the concrete deck and steel girders such as composite construction, partial composite construction, and noncomposite construction on the dynamic characteristics and dynamic behaviors of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. Although the slip at the interfaces between the concrete deck and steel girders results in the reduction of seismic total base shear in the transverse direction due to period elongation, it causes an undesirable behavior of skew bridges by the modification in mode shapes and distributions of stiffness. Shear connectors placed by minimum requirements for partial composite action have an effect on reducing the girder stresses and deck stresses; except case of some skew bridges, the magnitude of the girder stresses and deck stresses obtained from partial composite skew bridges is similar to or slightly more than those acquired from composite skew bridges.

합성형 사교는 비합성형 사교에 비해 역학적 측면에서 큰 장점을 지니고 있는 것이 사실이지만 사각이 심한 사교들의 경우 합성형 사교에 매우 큰 상판응력이 유발될 가능성이 있어 종종 이들 사교들에 대한 비합성형 설계가 검토되어지곤 한다. 본 연구에서는 동적해석이 가능한 비합성형 사교의 해석모델을 제안하고 이 해석모델들을 이용하여 사교들에 대한 비합성형의 적용 타당성을 검토하였다. 또한 주형과 상판과의 세 가지 상호작용(합성작용, 부분합성작용, 비합성작용)이 단순 판형사교들의 동적특성과 동적거동에 미치는 영향을 조사하였다. 주형간격, 사각, 상판 종횡비를 매개변수로 총 27개의 판형 사교들에 대한 일련의 연구를 수행하였다. 상판과 주형 경계면에서의 미끄러짐은 고유진동주기가 길어지는 현상을 유발하여 사교의 교축직각방향에 작용하는 전체밑면전단력의 크기를 감소시킬 수도 있지만 모드형장과 강성분포에 큰 영향을 미쳐 바람직하지 않은 사교 거동을 유발할 수도 있다. 부분합성작용의 최소 규정에 따라 설치된 전단연결재는 주형응력과 상판응력을 감소시키는 효과가 있다. 즉, 몇몇 사교의 경우를 제외하고는 전반적으로 부분합성형으로부터 구한 주형응력과 상판응력의 크기는 합성형 사교로부터 구한 관련 응력들의 크기와 유사하거나 약간 크게 나타난다.

Keywords

References

  1. 대한토목학회 (1996) 도로교표준시방서, 대한토목학회
  2. 대한토목학회 (2002) 도로교설계기준, 대한토목학회
  3. 문성권 (2003) 받침의 강성조정에 의한 사교 지점반력의 재분배, 대한토목학회논문집, 23(2A). pp.295-304
  4. 문성권 (2006) 단순사교의 거동에 미치는 콘크리트 상판과 주형간의 상호작용 효과, 한국전산구조공학회논문집, 19(2). pp.203-212
  5. AASHTO (1983) Standard Specifications for Highway Bridges. American Association of State Highway and Transportation Officials
  6. AASHTO (1996) AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials
  7. AISC (1989) Manual of Steel Construction(Allowable Stress Design). Ninth Edition, American Institute of Steel Construction, Illinois. p.1114
  8. Bruneau, M., d Alfawakhiri, F. (2000) Flexibility of Superstructure and Supports in the Seismic Analysis of Simple Bridges, Earthquake Engineering and Structural Dynamics. 29. pp.711-729 https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<711::AID-EQE936>3.0.CO;2-#
  9. Charles, R. F., Thomas, A. D. (1998) Bridge Modal Properties Using Simplified Finite Element Analysis, Journal of Bridge Engineering, 3(1), pp.38-46 https://doi.org/10.1061/(ASCE)1084-0702(1998)3:1(38)
  10. Chung, W. S., Sotelino, E. D. (2005) Nonlinear Finite-Element Analysis of Composite Steel Girder Bridges, Journal of Structural Engineering, AISC. 131(2), pp.304-313 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(304)
  11. CSA (1989) Design of highway bridges, CAN/CSA-S688. Canadian Standards Association
  12. Dennis L. M., Ehab E. L. (2005) Behavior of Headed Stud Shear Connectors in Composite Beam. Journal of Structural Engineering, AISC, 131 (1), pp.96-107 https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
  13. Ebeido, T., Kennedy, J. B. (1996) Girder Moments in Simply Supported Skew Composite Bridges, Canadian Journal of Civil Engineering, 23. pp. 904-916 https://doi.org/10.1139/l96-897
  14. Johnson, R.P., Molenstra, N. (1991) Partial Shear Connection in Composite Beams for Buildings, Proceedings, Institution of Civil Engineers. 91 (2), pp.679-704
  15. Joseph, P. C., Richard, W. F., Lawrence, G. G., Roberto T. L., Loring, A. W. J. (1997) Composite Construction Design for Building, McGraw-Hill. New York, p.333
  16. Lin. J. J., Beaulieu, D., Fafard, M. (1994) Para- metric study on noncomposite slab-on-girder bridges with enforced frictional contact, Canadian Journal of Civil Engineering, 21. pp.237-250 https://doi.org/10.1139/l94-027
  17. Lui, E. M., Meng, J. Y. (2002) Refined Stick Model for Dynamic Analysis of Skew Highway Bridges, Journal of Bridge Engineering, 3(1), pp.38-46 https://doi.org/10.1061/(ASCE)1084-0702(1998)3:1(38)
  18. Maleki, S. (2002) Free Vibration of Continuous Slab-Beam Skewed Bridges, Journal of Sound and Vibration, 255(4), pp. 793-803 https://doi.org/10.1006/jsvi.2001.4170
  19. Meng, J. Y., Lui, E. M. (2002) Refined Stick Model for Dynamic Analysis of Skew Highway Bridges, Journal of Bridge Engineering, AISC, 7(3), pp. 184-194 https://doi.org/10.1061/(ASCE)1084-0702(2002)7:3(184)
  20. Meng, J. Y., Ghasemi, R., Lui, E. M. (2004) Analytical and experimental study of a skew bridge model. Engineering Structures. 26. pp.1127-1142 https://doi.org/10.1016/j.engstruct.2004.03.013
  21. Midas information Technology Co. Ltd (2006) MIDAS/CIVIL, South Korea
  22. O'Brien, E. J., Keogh, D. J. (1999) Bridge Deck Analysis, E&FN SPON. New York, p.278
  23. OHBDC (1991) Ontario highway bridge design code. Ontario Ministry of Transportation and Communications
  24. Yam, L. P. (1981) Design of composite steel-concrete structures, Surrey University Press, London. p.168