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1. Introduction suggest an exact algorithm using the well-known zero in-

ventory property, and later, it is improved by Federgruen
Lot-sizing, which is one of important production planning  and Tzur (1991), Wagelmans ef al. (1992), and Agrawal and
and inventory control problems, has been a generic industrial ~ Park (1993). Although transportation costs form a substantial
optimization problem. In general, the problem can be classi-  part of the total logistics costs for satisfying demands, they
fied into static and dynamic ones (Johnson and Montgomery, are usually ignored in the bulk of lot-sizing research (van
1974). In the static version, such as economic order quantity ~ Norden and van de Velde, 2004). In general, lot-sizing and
(EOQ) and economic production quantity (EPQ), the demand  transportation decisions are closely interrelated, especially in
is assumed to be constant over time, while in the dynamic  the supply chain environment. This is because an integrated
version, the demand changes over a planning horizon. The  supply chain plan requires the coordination of production and
dynamic lot-sizing problem is introduced by Wagner and logistics operations as well as other functional specialties
Whitin (1958), and independently by Manne (1958). They  within the firm (Lee er al., 2003).
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There are a number of research articles on the lot-sizing
models in which transportation costs are considered expli-
citly. As in the ordinary lot-sizing literature, the models with
transportation costs can be classified into static and dynamic
ones. In the static version, the previous research articles ex-
tend the EOQ or EPQ models (Hall, 1996). Swenseth and
Godfrey (2002) and Zhao et al. (2004) are recent research
results on the static version of lot-sizing with transportation
costs, Also, in the dynamic version of the problem, the algo-
rithms suggested in the previous research, which are differ
in the structure of transportation costs, extend the basic dy-
namic lot-sizing algorithm of Wagner and Whitin (1958).
For example, see van Norden and van de Velde (2004). A
more general model is considered by Kim and Kim (2000)
on the multi-period inventory and distribution planning prob-
lem with one warehouse and multiple retailers. They suggest
a Lagrangean heuristic for the problem of minimizing the
sum of inventory holding and distance-dependent and quan-
tity-dependent linear transportation costs. Also, Bertazzi et
al. (2000) suggest a model to make a trade-off between trans-
portation costs and inventory costs by determining a cyclic
scheme of cost in order to minimize transport frequencies
for multiple products transported over a single [ink. For oth-
ers, see Qu et al. (1999) and Vroblefski et al. (2000).

This paper is concerned with the single-item dynamic
lot-sizing problem in which the transportation costs are com-
puted by the number of trucks, i.e., stepwise transportation
costs. The objective is to minimize the sum of transportation
and inventory holding costs. Unlike the previous research
articles that assume the linear transportation cost, we consid-
er the case in which the linear transportation cost is computed
by the number of trucks used. In general, companies try to
fully utilize the trucks if possible to minimize the transpor-
tation costs, the associated inventory holding costs increase.
These results in the basic trade-off between the transportation
and inventory holding costs, and the focus of this paper is
to suggest the algorithm that can give the solution that balan-
ces these cost factors.

In this paper, the problem is formulated as an integer linear
programming model, which is an extension of the classical
dynamic lot-sizing formulation. Since the zero inventory pro-
perty does not hold, the problem considered in this paper
is more difficult than the classical dynamic lot-sizing problem.
Due to the problem complexity, we suggest a greedy heu-
ristic algorithm in which the quantities that exceeds the in-
teger multiples (including zero multiple) of the truck capacity

are reassigned while considering the associated cost changes.
To show the performance of the heuristic algorithm, compu-
tational tests were done on randomly generated test problems,
and the results are reported.

The remainder of this paper is organized as follows. In
the next section, the problem considered in this paper is de-
scribed in more details and the corresponding integer linear
programming model is presented. Section 3 presents the heu-
ristic algorithm, and the results of computational tests are
presented in Section 4. Finally, Section 5 concludes the paper
with a summary and discussion of future research.

2. Problem Description

The problem considered in this paper can be defined as
the problem of determining the lot sizes while satisfying the
given dynamic demand over a finite planning horizon for
the objective of minimizing the sum of transportation and
inventory holding costs. The planning horizon is divided into
T periods, and demands over the planning horizon are given
and deterministic. At the beginning of each time period, the
item can be ordered in the form of a lot. It is assumed that
backlogging is not allowed, and hence the demand should
be satisfied on time. As stated earlier, the stepwise trans-
portation costs are considered in this paper, i.e., the trans-
portation costs are computed by the number of trucks used.
Therefore, the cost of using one truck occurs although the
amount of shipment is less than the truck capacity, i.e., less
than truck load (LTL). An organization may own a fleet of
trucks to serve its demands, and hence the quantity to be
delivered to any of its customers is limited by the number
and size of the available trucks. In this paper, however, we
consider the situation in which the trucks are rented and
hence the required trucks are computed based on the lot sizes.
It is assumed that homogeneous trucks are used, ie., truck
capacities are the same. Also, the inventory holding cost is
the cost required for storing items to satisfy future demand
and assumed to be computed based on the inventory level
at the end-of-period.

To describe the problem considered here mathematically,
an integer linear programming model is presented below. The
formulation includes the purchase costs for demanded items
since time-variant purchase costs are considered in the gen-
eral form of the model. In fact, this paper focuses on a special
case with time-invariant costs and hence the purchase costs
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can be eliminated without loss of generality. The formulation
of the special case considered in this paper will be presented
later. Before describing the formulation, the notations used
are summarized below.

* Parameters
D; demand at period ¢
h, inventory holding cost of one unit of the item in period ¢
s, transportation cost in period f
¢, purchase cost of one unit of the item in period ¢
Q capacity of truck

* Decision variables

X; lot size in period ¢

I, inventory level at the end of period r (fo represents
the initial inventory)

Z, number of trucks needed in period ¢ (general integer)

Now, the integer program is given below.

T
[P1] Minimize Y, (s, Z+h,L+c,X,)

t=1
subject to
L,=1_,+X,—D, for all ¢ (1)
X, < QZ, for all ¢ (2)
Z, > 0 and integer for all ¢ (3)
I, = 0 and integer for all ¢ (4)
X, = 0 and integer for all ¢ (5)

In the formulation, the objective function denotes mini-
mizing the sum of transportation, inventory holding, and pur-
chase costs. Note that these costs are time-variant in that
the cost values may differ in different planning periods. Con-
straint (1) defines the inventory level of the item at the end
of each period, called the inventory flow conservation cons-
traint. This implies that at the end of each period, we have
inventory what we had the period before, increased by the
amount of lot size, and decreased by the demand in that
period. Constraint (2) represents the relation between the lot
size and the number of trucks needed. That is, if no truck
is used in a period, i.e., Z, = 0, the corresponding lot size
becomes 0, i.e., X, = 0. Otherwise, the lot size should be
less than or equal to the sum of capacities of the number
of trucks used. Constraints (3), (4), and (5) represent con-
ditions on the decision variables. In particular, constraint (3)
represents the number of trucks required in each period,

which results in the stepwise transportation cost, and con-
straint (4) ensures that backlogging is not allowed.

As stated earlier, this paper focuses on the case of time-in-
variant costs, i.e., the cost values are the same over the plan-
ning horizon. These results in the following integer program-
ming model in which index ¢ is removed in the transportation
and inventory holding costs, and the purchase costs are
eliminated. Note that in the case of time-invariant costs, the
purchase costs are not needed since the total purchase quan-
tity always remains the same, irrespective of the different
lot sizes over the planning horizon.

T
[P2] Minimize ¥,(sZ, +h1I,)

t=1

subject to (1)~ (5)

The above formulation is very similar to that of the sin-
gle-item dynamic lot-sizing problem, i.e., the Wagner-Whitin
model. The differences are : (1) the truck capacity @ is used
instead of a big number; and (2) the number of trucks Z;
is used instead of the binary setup variable. However, these
slight changes make the problem much more difficult since
the well-known zero inventory property does not hold. In
other words, the solution space to be searched in the problem
considered in this paper is much greater than that of the
Wagner-Whitin model.

The integer programming model [P2] can be solved using
commercial optimization packages such as LINGO or CPLEX.
However, as the problem size increases, the packages cannot
guarantee the optimal solutions within a reasonable amount
of computation time. In fact, there may be much variation
in the computation times, depending on cost values, truck
capacity, etc. In this paper, therefore, we suggest a fast heu-
ristic that can give near optimal solutions within very short
computation time.

3. Solution Algorithm

This section presents a fast greedy-type heuristic algorithm
to find near optimal solutions for problem [P2]. As stated
earlier, the basic idea of the algorithm is that the quantities
that exceed the integer multiples of the truck capacity are
reassigned while considering the associated cost changes. In
general, it would be better to utilize the truck capacity as
much as possible when the transportation cost is relatively
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higher than the holding cost while it would be better not
to order more than needed in the opposite situation. Thus,
we should take into accounts the trade-off between the two
cost factors in determining the order sizes.

In the heuristic algorithm, the initial solution is obtained
with X; = D, for all «. This implies that transportation occurs
in every period to satisfy the demands over the planning hori-
zon and hence the maximum number of trucks is needed.
This incurs the largest transportation cost and the smallest
inventory holding cost. Therefore, we can improve the initial
solution by adjusting the lot sizes while considering the trade-
off between the two cost factors. Here, the trade-off is that
the transportation cost in a period is decreased by s by mov-
ing the items that exceeds the corresponding integer multi-
ples of the truck capacity to one or more earlier periods,
while this move results in increase in the inventory holding
cost. Therefore, it can be seen that there is an improvement
if the amount of decrease in transportation cost is greater
than the amount of increase in inventory holding cost. Note
that this can be done because we consider the case of time-in-
variant costs.

The number of trucks needed in period ¢ can be repre-
sented as

Z=1[X%/Q1,

where [ » 1 is the smallest integer that is greater than
or equal to -+ . Let R, denote the amount of remaining items
in period ¢ after Q(Z,— 1) items are loaded to (Z,— 1) trucks
and 4, denote the available extra truck capacity after loading
X; items in period ¢. Then, R; and 4, are defined as below.

R, =X,—Q(Z—1)
4,= @z~ X,

Then, based on the above two definitions, it can be seen
that there is an improvement if R, can be moved to one or
more periods earlier than f so that the corresponding increase
in inventory holding cost is less than the unit transportation
cost s. In addition, we can obtain a condition under which
the remaining items in a period ¢ cannot be reassigned to
its earlier periods. This can be expressed as follows.

t—=1

14, <R, for t such that R, >0 (6)

i=1

If the above condition holds, the total available truck ca-
pacity before period ¢ is less than R, and hence the items
cannot be reassigned to earlier periods.
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Now, it is needed to specify the amount of improvement
unless condition (6) holds. A mathematical description of
the amount of improvement (cost saving) CS; by moving R,
items from period ¢ to its earlier periods can be represented
as

CS,=s—hminl[d,_;, R, for t = 2
CS,=s—hminld,_;, R~

t—1 izl
Ry imin[d, max(R,— >4, ;,0)]
i=2 j=1
for 3<¢t< T

In the algorithm suggested in this paper, the improvements
are done in a greedy manner in such a way that the total
cost is decreased in the steepest decent direction.

More formally, the algorithm can be summarized below.

Procedure 1
Step 1 : (Obtain an initial solution)

Let X,=D, and Z,= [ X,/Q] for all ¢.

Step 2 : (Specify the period with the maximum improve-
ment)
1) Calculate CS, for all 2<¢< T.
2) Find the period ¢ that gives the maximum im-
provement, i.e.,
" =argmaxCS,
2<t<T
Step 3 : (Update the solution)
If C5, <0, stop and save the solution.
Otherwise, let
X =X ~F,,

X, :Xtaﬂ—l—min(A

: R.) and

£ -1 Y
t—t—1

X, =X,+minl4,, max(Rt‘— Z At*_j, 0)]
j=1

for 1<t<+t—2, and go to step 2.

To illustrate the algorithm, consider a simple example with
T = 4, The inventory holding () and transportation (s) costs
are 1 and 10, respectively. The truck capacity Q is 10, and
the demands are 8, 21, 16, and 5 for periods 1, 2, 3, and
4, respectively. <Table 1> shows the values of CS; and X,
at each iteration of the algorithm. In this example, the algo-
rithm gives an optimal solution with total cost of 53. (This
was proved by solving the corresponding integer program
with LINGO 8.0.) Note that as the iteration continues, the
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total transportation cost decreases while the total inventory
holding cost increases. Also, <Figure 1> shows the lot sizes
in the initial and final solutions, respectively, for the example
problem.

<Table 1> Results of the example problem

) Amounts of improvement
teration
s, cs, Cs, cs,
0 (Initial) - 9 4 4
1 - - - 3
2 . R - R
. Lot sizes
lteration
"Yl X2 XS X4
0 8 21 16 5
1 9 20 16 5
2 10 20 20 0
) Costs
lteration ; 7 3
THC T7C TC
0 0 70 70
1 1 60 61
2 8 50 58

Note) ! Total inventory holding cost.
? Total transportation cost.
3 Total cost.

1

4

Initial order sizes Final order sizes

<Figure 1> Initial and final iot sizes for the example
problem

4. Computational Experiment

To show the performance of the heuristic algorithm sug-
gested in this paper, this section reports the test results on
various test problems. Two performance measures were used
in the test. They are percentage deviations from optimal sol-
ution values and CPU seconds. Here, optimal solution values
were obtained by solving the corresponding integer programs
using LINGO 8.0, commercial integer programming software

“
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based on the branch and bound algorithm.

For the test, 10 problems with different data were gen-
erated randomly for each of six levels of the number of peri-
ods (5, 10, 20, 30, 40, 50), and hence 60 problems were
generated in total. Demands were generated from DU(10,
100), where DU(a, b) denotes the discrete uniform distri-
bution with range [a, b]. The transportation and inventory
holding costs were generated from 10DU(15, 20) and DU(Y,
5), respectively. Also, the capacity of the truck was generated
as the total demand divided by 27, i.e., D/2T. In this test,
the algorithm and the program to generate integer program-
ming formulations were coded in C and the test was done
on a personal computer with a Pentium processor operating
at 600 MHz clock speed.

Results of the test are summarized in <Table 2>, which
shows the percentage deviations from optimal solutions and
CPU seconds. It can be seen from the table that the heuristic
algorithm suggested in this paper gives near optimal sol-
utions for most of the test problems, 1.e., 3.21% in average.
Also, as expected, LINGO 8.0 required much longer compu-
tation times than the heuristic. In fact, the CPU seconds of
the heuristic algorithm were less than 0.01 second.

<Table 2> Test results for the suggested heuristic

Num of Gap' CPU seconds
periods | min | average | max | LINGO | Heuristic
5 0.00 3.99 9.05 0.30 0.00°
10 0.48 3.57 6.51 1.00 0.00
20 L1 3.25 492 11.30 0.00
30 0.48 3.07 5.51 24.00 0.00
40 172 2.66 3.81 129.90 0.00
50 1.64 2.74 5.35 843.70 0.00

Note © ' percentage deviations from optimal solutions.
" CPU second was less than 0.01 second.

5. Concluding Remarks

This paper considered the single-item dynamic lot-sizing
problem with stepwise transportation costs, which is the
problem of determining the lot sizes while satisfying the dy-
namic demand over the planning horizon for the objective
of minimizing the sum of transportation and inventory hold-
ing costs. An integer linear programming formulation, which
is an extension of the classical dynamic lot-sizing formula-
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tion, was suggested to model the problem mathematically,
and the simple greedy algorithm was developed. The basic
idea is to reassign the quantities that exceeds the integer mul-
tiples of truck capacity while considering the associated cost
changes in a greedy manner. Computational tests were done
on randomly generated test problems, and the results showed
that the heuristic can give near optimal solutions within very
short computation time.

This research can be extended in several ways. First, it
is needed to consider the problem with time-variant costs.
In this case, the basic idea of the algorithm suggested in
this paper can also be used together with a more complicated
method to compute cost changes. Second, the case of multi-
ple items is an important consideration. If there are no inter-
actions among the multiple items, we can treat them indivi-
dually. However, there are various constraints that make the
problem difficult. In this case, the single-item model sug-
gested in this paper can be used as to solve the subproblems.
Finally, like other lot-sizing problems, it is needed to extend
the problem in a stochastic version, e.g., stochastic costs,
stochastic demand, etc.

References

[1] Agrawal, A. and Park, J. K.; “Improved Algorithm for
Economic Lot Size Problems,” Operations Research,
41 1 549-571, 1993.

[2] Bertazzi, L., Speranza, M. G., and Ukovich, W.; “Exact
and Heuristic Solutions for a Shipment Problem with
Given Frequencies,” Management Science, 46 : 973-988,
2000.

[3] Federgruen, A. and Tzur, M.; “A Simple Forward Al-
gorithm to Solve General Dynamic Lot Sizing Models
with n Periods in O(nlogn) or O(n),” Management Sci-
ence, 37 1 909-925, 1991.

[4] Hall, R. W.; “On the Integration of Production and Dis-
tribution : Economic Order and Production Quantity Im-
plications,” Transportation Research-Part B, 30 : 387-
403, 1996.

[5] Johnson, L. A. and Montgomery, D. C.; Operations Re-

search in Production Planning, Scheduling, and Invento-
ry Control, John Wiley and Sons, 1974.

[6] Kim, J.-U. and Kim, Y.-D.; “A Lagrangean Relaxation
Approach to Multi-Period Inventory/Distribution Plann-
ing,” Journal of the Operational Research Society, 51 :
364-370, 2000.

[7] Lee, C.-Y., Cetinkaya, S., and Jaruphongsa, W.; “A
Dynamic Model for Inventory Lot Sizing and Outbound
Shipment Scheduling at a Third-Party Warehouse,” Ope-
rations Research, 51 : 735-747, 2003.

[8] Manne, A. S.; “Programming of Economic Lot Sizes,”
Management Science, 4 : 115-135, 1958.

[9] Qu, W. W., Bookbinder, J. H., and Iyogun, P.; “An
Integrated Inventory-Transportation System with Modi-
fied Periodic Policy for Multiple Products,” European
Journal of Operational Research, 115 : 254-269, 1999.

[10] Swenseth, S. R. and Godfrey, M. R.; “Incorporating
Transportation Costs into Inventory Replenishment De-
cisions,” International Journal of Production Econo-
mics, 77 * 113-130, 2002.

[11] van Norden, L. and van de Velde, S.; “Multi-product
Lot-Sizing with a Transportation capacity Reservation
Contract,” European Journal of Operational Research,
165 : 127-138, 2005.

[12] Vroblefski, M., Ramesh, R., and Zionts, S.; “Efficient
Lot-Sizing under a Differential Transportation Cost
Structure for Serially Distributed Warehouses,” Euro-
pean Journal of Operational Research, 127 © 574-593,
2000.

[13] Wagelmans, A. P. M., Van Hoesel, S. P. M., and Kolen,
A.; “Economic Lot Sizing: an O(nlogn) algorithm that
Runs in Linear Time in the Wagner-Whitin Case,”
Operations Research, 40 : 145-156, 1992,

[14] Wagner, H. M., and Whitin, T.; “Dynamic Version of
the Economic Lot Size Model,” Management Science,
51 89-96, 1958.

[15] Zhao, Q.-H., Wang, S.-Y., Lai, K. K., Xia, G. P;
“Model and Algorithm of an Inventory Problem with
the Consideration of Transportation Cost,” Computers
and Industrial Engineering, 46 @ 389-397, 2004.



