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The BMAP/M/N/0 queueing system operating in Markovian random environment is investigated. The stationary distri-
bution of the system is derived. Loss probability and other performance measures of the system also are calculated. Nume-
rical experiments which show the necessity of taking into account the influence of random environment and correlation in

input flow are presented.
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1. Introduction

Various queueing systems have been studied for traffic con-
trol to support traffic streams with different traffic characteristics
in telecommunication networks. Queueing systems suit for de-
scription of a variety of real-life processes, in particular, descrip-
tion of operation of telecommunication networks and they have
got a lot of attention in probabilistic literature. Important class
of queueing systems assumes that customers arrive into the sys-
tem in batches. It is usually assumed that, at a batch arrival
epoch, all customers of this batch arrive into the system simul-
taneously.

A. K. Erlang founded queueing theory in the early 1900th.
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Since that time, well known Erlang's B-formula for loss proba-
bility in the M/M/N/0 queueing system, i.e. N server queueing
system without waiting space, with stationary Poisson arrival
process and exponential service time distribution, provided a
good mathematical tool for capacity planning and performance
evaluation in the classic telephone networks. This is explained
by the facts that (D the flows of information in such networks
were well described by the stationary Poisson arrival process
(stationary ordinary arrival process with no after effect) and @
distribution of the number of busy servers in the M/G/NA system
(and loss probability correspondingly) is insensitive with respect
to the service time distribution under the fixed mean service
time. The latter fact was proven by B. A. Sevastjanov in [10].
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So, assumption by A. K. Erlang that service time distribution
is exponential (what is not true in real life systems) was not
rough.

However, the flows in the modern telecommunication net-
works have lost the nice properties of their predecessors in the
old classic networks. In opposite to the stationary Poisson arrival
process, the modern real life flows are non-stationary, group
and correlated. The BMAP (Batch Markovian Arrival Process)
is one of the appropriate models of such flows. The BMAP was
introduced as a versatile Markovian point process (VMPP) by
M. F. Neuts in the 1970th.

Note that aithough Erlang's B-formula is very simple, to facil-
itate its use by practical engineers, special books were published
which contained tables giving the value of loss probability for
different values of the traffic intensity and different number of
servers, Traffic intensity is defined as ratio of a rate of stationary
Poisson arrival process and a service rate. In the case when
the arrival process is the BMAP ; arrival process is described
by a bunch of parameters, so it is not possible to have a set
of tables which allows to calculate, in advance, loss probability
for all BMAPs. Instead, it is required development of computer
programs which can allow quickly calculate loss probability for
any fixed BMAP: Note, that the problem of constructing the
BMAP; which fits well real arrival process, is not very simple.
However, this problem has practical importance and is in-
tensively solving. For relevant references and fitting algorithms
see, e.g., [11].

The Erlang loss model for the case of BMAP input was inves-
tigated in [5]. The essential extension of results to the case of
PH (Phase type) service time distribution was considered in [4]
where numerically stable algorithms for calculating the sta-
tionary distribution of the number of customers in the system
are developed. These algorithms are realized as computer soft-
ware. Numerical results, which are obtained by use of this soft-
ware and presented in [4], evidently show that loss probability
in the case of correlated bursty BMAP input is sensitive with
respect to the service time distribution and also varies essentially
for different correlation and variation of inter-arrival times under
the fixed value of the mean arrival rate. This implies that simple
Erlang's B-formula is inappropriate for capacity planning and
performance evaluation in the modern telephone networks and
algorithms from [4] should be used for this purpose. However,
even the involved BMAP/PH/N/A) system may fail in application
to practical systems. The reason is the following. Assumption
that the input flow is described by the BMAP allows to take
into consideration effect of correlation in arrival process and

variation of inter-arrival times. Assumption that the service proc-
ess is described by the PH distribution allows to take into con-
sideration variation of service times. But these BMAP arrival
process and PH service process are assumed to be stationary
within the borders of the model analyzed in [4]. While in many
real-life systems the input and service processes are not abso-
lutely stable. They may be influenced by some external factors,
e.g., the different level of the noise in the transmission channel,
hardware degradation and recovering, change of the distance
by a mobile user from the base station, parallel transmission
of high priority information, etc. Information transmission chan-
nel modelled by means of the BMAP/PH/N/0 queueing system
can be a part of complex communication network. The rest of
the network may essentially vary characteristics of the arrival
and service process in this system by means of : (D changing
the bandwidth of the channel (due to reliability factors or the
needs to provide good quality of service in another parts of
the network when congestion occurs); @ changing the mean
arrival rate due breakdowns, overflow or underflow of alter-
native information transmission channels. Thus, to get the math-
ematical tool for adequate modelling such information trans-
mission channels, more complicated queues than the BMAP/PH
/N0 queueing system investigated in [4] should be analyzed.

These queues, in addition to the account of complicated in-
ternal structure of the arrival and service processes by means
of considering the BMAP as the model of arrival process and
PH as the model of the service process, must take into account
the effect of influence of the random external factors. In some
extent, it can be done by means of analyzing the models of
queues operating in a random environment.

Speaking about the queue in the random environment (RE),
we assume that there are a queueing system and an external
finite state space stochastic process called RE. Under the fixed
state of the RE, queueing system operates as a classic queueing
system of the correspondent type. However, when the RE jumps
into another state, the parameters of the queueing system (inter-
arrival times distribution or arrival rate, service times distribu-
tion or service rate, number of servers, retrial rate, etc) can im-
mediately change their values. History of investigation of queues
operating in a random environment can be traced back to the
book by B.V. Gnedenko and 1. N. Kovalenko where the M/G/1
type queueing model with so called partial failures was inves-
tigated.

States of the random environment correspond to levels of
non-operability of the server. The problem of calculating dis-
tribution of the total length of customers in the system was
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consideted. In [12], the problem of calculating the stationary
distribution of the queue in the M/M/1 system was under study.
Essential role in investigation of queues operating in a random
environment was played by M. Neuts who investigated the
M/M/1 type queue operating in a random environment, see [8]
and the M/SM/1 type queue, see [9], by means of the matrix
analytic methods. As the simplest case of queues operating in
a random environment, Queues with unreliable servers can be
mentioned as the simplest case of queues operating in a random
environment. Queues with arrival process modulated by some
stochastic process (e.g., the Batch Markov Arrival Process men-
tioned above, its important partial cases such as Markov
Modulated Poisson Process, see [2], Interrupted Poisson Process,
Switched Poisson Process, and more general heterogeneous
Marked Markov Arrival Process, see [3], and Semi-Markov
Arrival Process) as weil as queues with service process modu-
lated by some stochastic process (e.g, Semi-Markov Service
Process, Markov Service Process, see [1], Phase-type Service
Process) can be also considered as important special cases of
queues operating in a RE.

Importance of investigation of queues operating in a RE dras-
tically increased in the last years due to the following reason.
Flows of information in the modern communication networks
are essentially heterogeneous. Some types of information are
very sensitive with respect to delay and jitter but tolerant with
respect to losses. Another ones are tolerant with respect to delay
but very sensitive with respect to loss of packets. So, different
schemes of dynamic bandwidth sharing among these types exist
and are developing. They assume that, in case of congestion,
transmission of delay tolerant flows is temporarily postponed
to provide better conditions for transmission of delay sensitive
flows.

Analysis of such schemes requires probabilistic analysis of
multi-dimensional processes describing transmission process of
different flows. This analysis is often impossible due to mathe-
matical complexity. In such a case, it is reasonable to decompose
simultaneous consideration of all flows to separate analysis of
processes of transmission of delay sensitive and delay tolerant
flows. To this end, we model transmission of delay sensitive
flows in terms of queues with controlled service or (and) arrival
rate where the service or arrival rate can be changed depending
on the queue length or waiting time. Redistribution of the band-
width to avoid congestion for delay sensitive flows causes varia-
tion, at random moments, of available bandwidth for delay toler-
ant flows. Correspondingly, queues operating in a RE naturally
arise as the mathematical model for delay tolerant flows trans-

mission. Overwhelming majority of the existing papers is de-
voted to the investigation of systems operating in Markovian
RE. Analysis becomes more difficult if the RE is defined by
semi-Markovian process.

Note, that two kinds of a random environment are considered
in literature. More popular is the RE which can be called as
asynchronous RE. Such the RE makes its transitions absolutely
independent on the state of the queueing system which is gov-
erned by this RE. Another type, which can be called as the
synchronous RE, assumes that the RE makes its transitions in-
dependently on the state of the queueing system, but only at
some moments synchronized with moments of customers de-
parture or (and) arrival in the queueing system.

In this paper we extend BMAP/M/N/0 model assuming that
the system has R different modes of operations, and the modes
are switched by an external random process, so called random
environment, The considered queueing model has a wide range
of potential applications because in practical systems the input
and service processes are not absolutely stable, they are influ-
enced by external factors, e.g., the different level of the noise
in the transmission channel, hardware degradation and recover-
ing, change of the distance by a mobile user from the base
station, etc.

The rest of the papers is organized as follows. Mathematical
model is formulated in section 2. Section 3 contains analysis
of the stationary distribution of the system states and perform-
ance measures of the system are given in section 4. Section
5 contains results of numerical experiments and their short
analysis.

2. Mathematical Model

We consider an N-server queueing system. The behavior of
the system depends on the state of the stochastic process
(random environment) r,, t > 0, which is assumed to be an
irreducible continuous time Markov chain with the state space
{1, R}, R = 2and the infinitesimal generator Q. The input
flow into the system is the following modification of the
well-known (see, e.g., [7]) BMAP. In this input flow, the batch
arrivals are directed by the process 7,, ¢ = 0 (the directing proc-
ess) with the state space {0,1,--- W}. Under the fixed state
r of the random environment, this process behaves as an irredu-
cible continuous time Markov chain. Transitions of the chain
7, t =0, which are not accompanied by arrival, are described

by the matrix D\, and transitions, which are accompanied by



42

arrival of k-size batch, are described by the matrix DO(T), k=1,

r=1,R The matrix D"/(1) is an irreducible generator for all
r=1,R. Under the fixed state r of the random environment,
the average intensity A" (fundamental rate) of the BMAP is
defined as A" =6 (D")(2))’|._ e and the intensity A of
batch arrivals is defined as A" =0(T)(—D0(’))e Here 6 is
the solution to the equations 07 D(1) =0, 6Pe=1c is a
column vector of appropriate size consisting of 1's. The variation

coefficient ") of intervals between batch arrivals is given by

(ci))?2 =29 (— pi)~le —1 while the correlation coef-

var
ficient ) of intervals between successive batch arrivals is cal-
culated as ) = (A9 (— D)= (D"N(1) — D) (-~ DI
e—1)/(ct))?The state of the process v, t = 0, is not changed
at the epochs of the process r,, ¢ = 0, transitions.

The system under consideration has no waiting space. So,
if the system has all servers being busy at a batch arrival epoch,
the batch leaves the system forever and considered to be lost.
If there are free servers at arrival epoch, however the number
of these servers is less than the number of customers in the
group so called partial admission discipline is used. It means
that only a part of the group corresponding to a number of free
servers is allowed to enter the service while the rest of the group
is lost. It is assumed that all servers are identical and operate
independently of each other. Service time of a customer by a
server has an exponential distribution of intensity 1" under
the state » of the random environment. OQur aim is to calculate
the stationary state distribution and main performance measures
of the described queueing model.

3. Stationary State Distribution

It is easy to see that operation of the considered queueing
model is described in terms of the irreducible continuous-time
Markov chain ¢, = {i,,7,,v,}, ¢ =0, where i, is the number
of customers in the system (the number of busy servers), r,

is the state of random environment, r, =1, R, and v, is the

state of the BMAP directing process at the epoch ¢, t > 0.
Enumerate the states of the chain &,, ¢ = 0 in the lexicographic
order and form the row vectors P;, i =0,V of probabilities
corresponding to the state i of the first component of the process
€&, t=>0. Denote also p=(py - py).

The vector p satisfies the systern of linear algebraic equations
of the form :

pA=0, pe =1 (1)

where A is an infinitesimal generator of the Markov chain ¢,
t=0.

Let 4 be an identity matrix of size listed as the low index,
I,=1 ® and @ be the symbols of Kronecker’s product and

sum of matrices ;

D, =diag{D"), r=T,R}, i=0,N—1;

Dy, = diag{ZD,gr) r= i,—ﬁ}’ 7
k=1

= diag{u(r), r=1,R }

H
=

Lemma 1. Infinitesimal generator A of the Markov chain has
the following block structure &,, ¢ =0 :

To solve system (1) we use the effective stable procedure
basing on the special structure of the matrix A (it is upper block
hessenbergian) and probabilistic meaning of unknown vector p.
Such a procedure was done in [4]. It is briefly described in
the following statement.

Proposition 1. The stationary probability vectors p;, ¢= 0,4V,

are calculated as follows :
pl’ i:PoFl, l= 17N7

where the matrices F; are calculated recurrently

- =1 _ —_
B= (AO,I+EEA1',I)(_ Al,l)Alv I=LN—1,

=1

N—1
Fy= (AO,N+ 2 F'iAi,N)(_AN,N)717

i=1

A = (Anvn')n,n’:o,'/v =
b+ Q®[W D, D, DMN
pd Dy+ Q&I — ply; D, Dy y—y
0 0 0 DN,O+Q®1W_N“IW
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the matrices Zi’  are calculated from the backward recursion

Aiy=4, 5, 1=0,N,
Ai,l :Ai,l+Ai,l+1Gl’

1=0,1,1=N~-1,0

the matrices G, i =0, N—1 are calculated from the backward

recursion

i—1

N_ —
Gi:(‘AHLiH_ E Ai+1,i+1+zG;+lGi+l—1
=1

~ Giy) 4 1= N-1,0,

the vector p, is calculated as the unique solution to the following

system of linear algebraic equations:
— N
PoAge =0 (Y Frete) =1 3)
=1

The proof of the Proposition follows from the theory of mul-
ti-dimensional Markov chains with continuous time, see [6]. It
is worth to note that Neuts’ matrix G, which is usually found
numerically as solution to matrix equation, see [9], here is ob-
tained in explicit form.

4. Performance Measures

Having the vector p be calculated, we are able to calculate
the main performance measure of the considered model. 1t is
the probability P, that an arbitrary customer is lost in the
system (loss probability).

Theorem 1. Loss probability P, is calculated as follows:
1 N
Ploss =1- X leiQi,ifle (4)

Here A is a mean arrival rate into the system and is calculated
by A=xD(z)'l,_ e, where the row vector x is the unique
solution to the system x(Q® I +D(1)) =, xe =1,

Proof. According to a formula of the total probability, the proba-
bility 7,,, is calculated as

N—1 co

=1- 33 PPV R )

i=0k=1

'PZDS S

where P, is a probability that an arbitrary customer arrivals

in a batch consisting of & customers ; P* is a probability to

i

see 7 servers being busy at the epoch of the k size batch arrivals;
RFis a probability that an arbitrary customer will not be loss
conditional it arrivals in a batch consisting of & customers and
i servers are busy at the arrival epoch. Taking into account
that the row vector x characterizes the stationary state dis-
tribution of the continuous time Markov chains with the gen-
erator @ ® /4 +.D(1), which governs customers arrival into

the system, one can see that x DJe is an intensity of arrival
of batch of size k, kx Dpe is an intensity of arrival of customers

in batches of size k, and A =xD(z)l'e is a mean arrival rate.
It can be shown that

DY
pO=D 0N k21 ©)
D
kx D% x D% :
= — = , k=1 7
B xD(z)e A @
1, k<N-i
R ) N .
R {%le—i,i:o,N—l @®

By substituting (6)-(8) into (5) after some algebra we get (4).

In trivial way we can also to calculate a number of other
stationary performance measures of the considered model.

* The probability to see i busy servers

p;, =pe, i=0, N

» The mean number of busy servers

» The joint probability to see i busy servers, the random envi-
ronment in the state 7 and the process v, in the state v

pli,r,v) =pi[07‘01 ]@)QW’ i=0,N, r=1LR, v=0,
R—r
where e, and 0, are n-dimensional column vectors consisting
of units and zeros respectively.
- The joint probability to see i busy servers and the random
environment in the state » ‘

M=l
|
<

plirw), i=0,
0

pi(T) =

i

v

5. Numerical Examples

Present the results of two experiments. The goal of the first
experiment is confirmation of some intuitively clear reasoning
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relating the possibility of approximation of the system operating
in random environment (system in RE).

The first type approximation is described as follows. We ex-
tend BMAP/M/N/0 model assuming that the system has R differ-
ent modes of operations. Parameters of the r-th system are de-
fined by the parameters of the r-th operation mode. To approx-
imate some performance characteristic of the system in RE we
calculate the same characteristic for each of R systems without
RE and then average them according to the stationary dis-
tribution of the RE.

The second type approximation is described as follows. The
approximated characteristic is calculated as the corresponding
characteristic of an averaged BMAP/M/N/0 system. The parame-
ters of this system are obtained by means of averaging the corre-
sponding parameters of the initial system in RE according to
the stationary distribution of the RE. <Figure 1> illustrates the
dependence of the value 7, for the system in RE and the
same value calculated by the first type approximation (“mixed
system”) and by the second type approximation (“mixed parame-
ters”) on the RE rate. We define the random environment with
different rates by their generators having the form Q"= Q¥ .
10*, where the generator Q' describes the RE whose rates
are comparable with the rates of input and service processes.

©) -5 5 )
@ (15 —15

We vary the parameter k from -5 to 5 what corresponds to
the variation of the RE rate from “very slow” (comparing the
rates of input flow, service and retrial processes) to “very fast”.

—— Mixed systems

~ 4~ Systemin RE

b Mixed parameters

54321012345
k

<Figure 1> Dependence of the loss probability on the
RE rate

The input flow is described by the BMAP; and BMAP,
and service process is defined by PH; and PH. The results
are presented on <Figure 1>. Mention that the exact value of
the loss probability lies in the interval between approximate val-

ues given by “mixed system” and “mixed parameters” approx-
imations on <Figure 1> where the correlation in the BMAP; and
BMAP; is not very high and differs not very essentially. Figure
| shows that the first type approximation is good in case of
“slow RE” and the second one can be applied in case of “fast
RE”. And there is an interval for RE rate (approximately the
interval (-1,2)) where we cannot use the estimates for P,
calculated by the considered approximating models. <Figure 1>
confirm the importance of investigation implemented in this
paper. Simple engineering approximations can lead to unsat-
isfactory performance evaluation and capacity planning in real
life systems.

In the second experiment we compare the main performance
measures of the original system in RE and more simple ex-
ponential queueing systems, which can be considered as “engi-
neer” approximations of the original system. The first type ap-
proximate model is the system M/M/N/0 in the RE. It differs
from the original system by assumption that input flows in its
modes are stationary Poisson ones whose intensities are equal
to fundamental rate of corresponding BMAPs in the original
system, The second type approximate model is the Erlang sys-
tem M/M/N/0 whose parameters are obtained by means of aver-
aging the corresponding parameters of just described system
M/M/N/0 in the RE according to the stationary distribution of
the RE.

Let us assume that the RE has two states. One state corre-
sponds to peak traffic periods, the second one corresponds to
normal traffic periods. Service times during these periods are
defined by PH, and PH, distributions. Arrivals during these peri-
ods are defined by the stationary Poisson flow with the rates
A, and ), correspondingly and initially we assume that
A, > Ay It is intuitively clear that if it is possible to redistribute
the arrival processes (i.e., to reduce arrival rate during peak
periods and to increase it suitable during the normal traffic peri-
ods) without changing the average arrival rate, the loss proba-
bility in the system can be reduced. In real life system such
a redistribution is sometimes possible, e.g., by means of control-
ling tariffs during the peak traffic periods. The goal of this ex-
periment is to show that this intuitive consideration is correct
and to illustrate the effect of redistribution.

We assume that the averaged arrival rate X should be 1.25
and consider four different situations: very big difference
A, =10), (curve 3), big difference A\, =3X, (curve 2) and
equal arrival rates A, = Aj(curve 1). The generator of the ran-

—15 15)

dom environment is as follows Qz( 5 _5
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It can be seen from <Figure 2> that smoothing the peak rates
can cause essential decrease of the loss probability. <Figure 2>
shows the dependence of the loss probability on the system load
in the original system (curve 1), in the first type approximate
model (curve 2) and in the second type approximate model
(curve 3)

-+

o D

0.160.320.48 0.64 0.8 0.96 1.121.28 1.44 1.6
tho

<Figure 2> Dependence of the loss probability in the
system in RE and in the exponential system
on the system load

6
5 —— 1
4
s )
ﬂ-’z
1 =3
0

0.16 0.32 0.48 0.64 0.8 0.96 1.12 1.28 1.44 1.6

rho

<Figure 3> Dependence of mean number of busy servers
in the system in RE and in the exponential
system on the system ioad.

<Figure 3> shows the dependence of the mean number of busy
servers on the system load in the original system (curve 1),
in the first type approximate model (curve 2) and in the second
type approximate model (curve 3).

One conclusion from the figures, which is expectable due
to [4], is that the variation of service time has significant impact
on the loss probability. One more conclusion, which agrees with
numerical results presented in [4], is that the lower variance
of service time implies the higher value of the loss probability.
More surprising conclusion is that the loss probability is lowest,
except the case of low traffic, when periods of high service
time variation alternate with periods when the service time has

small variation under the constant mean service rate.
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